期刊文献+

多智能体学习中基于知识的强化函数设计方法 被引量:3

A Method to Design the Reward Function Based on Knowledge in Multi-agent Learning
下载PDF
导出
摘要 强化函数的设计是构建多智能体学习系统的一个难点。提出了一种基于知识的强化函数设计方法,根据实际应用的特点,将经验信息和先验知识引入到强化函数中,提高了强化学习的性能。通过在RobotSoccer中的应用和实验,基于知识的强化函数的学习效果要优于传统的强化函数。 The design of reward function is one of difficulties in building reinforcement learning system.A design of reward function based on knowledge is presented.In term of the characteristic of application system,the experience and the domain knowledge are introduced to reward function.The performance of reinforcement learning is improved.With the application and experiment of Robot Soccer,it is illuminated that the reward function based on knowledge has the better effect than the traditional reward function.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第3期77-79,共3页 Computer Engineering and Applications
关键词 智能体 强化学习 强化函数 ROBOT SOCCER agent ,reinforcement learning,reward function,Robot Soccer
  • 相关文献

参考文献8

  • 1罗青,李智军,吕恬生.复杂环境中的多智能体强化学习[J].上海交通大学学报,2002,36(3):302-305. 被引量:9
  • 2.[EB/OL].http://www.fira.net.,. 被引量:1
  • 3R S Sutton,A G Barto. Reinforcement Learning:An Introduction[M].Cambridge,MA:MIT Press, 1998. 被引量:1
  • 4C J C H Watkons,P Dayan. Q-leanign[J].Machine Learning,1992;8(3): 279~292. 被引量:1
  • 5M J Matalic. Reward Functions for Accelerated Learning[C].In:Proc Int Conf on Machine learning,1994:181~189. 被引量:1
  • 6Kousuke INOUE,Jun OTA,Tomohiko KATAYAMA et al. Acceleration of Reinforcement Learning by A Mobile Robot Using Generalized Rules[C].In:Proc IEEE int Conf Intelligent Robots and Systems,2000: 885~890. 被引量:1
  • 7L P Kaelbling. Learning in Embedded Systems[D].Ph D thesis. Standford University, 1990. 被引量:1
  • 8D P Bertsekas. Dynamic programming:deterministic and stochastic models[M].Prentice-Hall,Englewood Cliffs,NJ, 1987. 被引量:1

二级参考文献5

  • 1[5]Riedmiller M, Merke A, Meier D. Karlsruhe brainstormers- a reinforcement learning approach to robotic soccer[DB/OL].http://illwww.ira.uka.de/-riedml/. 被引量:1
  • 2[1]Noda I. Soccer sever: a tool for researches on multi-agent systems[DB/OL].http://citeseer.nj.nec.com/noda97soccer.html. 被引量:1
  • 3[2]Kitano H, Tambe M, Stone P, et al. The robocup synthetic agent challenge 97[A]. RoboCup-97:Robot Soccer World Cup I[C].Berlin:Springer Verlag, 1998.62-73. 被引量:1
  • 4[3]Stone P. Layered learning in multi-agent learning[D].Pittsburgh:Carnegie Mellon University, 1998. 被引量:1
  • 5[4]Kaelbling P L, Littman L M, Moore W A. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence, 1996,4:237-285. 被引量:1

共引文献8

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部