期刊文献+

一种中风病人脑出血CT图像序列的自动分割方法 被引量:1

A Method of CT Image Segmentation in Stroke Patients
下载PDF
导出
摘要 运用计算机技术辅助诊断脑中风出血病人对于精确计算出血量、及时挽救生命有着重要的意义。有时由于出血点小、边缘模糊,给 图像的分割造成一定的困难。根据图像的特征,该文运用基于Gustafson-Kessel模糊C均值聚类(FCM)两步分割算法较为准确地对出血区域 及水肿带进行了分割,同时,在分割开始时运用了TT图谱配准,从而减少了分割影响因素,提高了分割的有效性。 An automatic segmentation method of CT image of spontaneous intracerebral brain hemorrhage is introduced in this paper. The algorithm could be divided into two levels. Before segmentation, the dataset is registered with the TT atlas to reduce the affected facts. After that, Gustafson-Kessel fuzzy C-means is used twice in two levels to do the segmentation. First the Global segmentation, then the local. The method can be mostly and automatically except selection of hemorrhage and edema region, and can improve the accuracy and efficiency of the segmentation.
作者 尚斌 徐良贤
出处 《计算机工程》 CAS CSCD 北大核心 2004年第B12期356-357,514,共3页 Computer Engineering
关键词 脑出血CT图像 Gustafson-Kessel模糊C均值聚类 自动分割 CT image of hemorrhage Gustafson-kesscl fuzzy C-means Automatic segmentation
  • 相关文献

参考文献3

二级参考文献11

  • 1[1]Zhao Bin-sheng, David Yankelevitz. Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images[J]. Medical Physics, 1999,26(6) :889~895. 被引量:1
  • 2[2]Ashton E A, Berg M J, Parker K J. Segmentation and feature extration techniques, with applications to MRI head studies[J].Magnetic Resonance Medicine, 1995,33(5) :670~677. 被引量:1
  • 3[3]McInerney T, Terzopoulos D, Medical image segmentation using topologically adaptable snakes [A]. In: Proceedings First International Conference on Computer Vision, Virtual Reality,and Robotics in Medicine (CVRMed'95)[C], Nice, France,1995,905:92~101. 被引量:1
  • 4[4]Vincent Caselles, Ron Kimmel. Minimal surfaces based object segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(4): 201~209. 被引量:1
  • 5[5]Rafael Wiemkera, Andre Zwartkruisb. Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT[A]. In: Proceedings of International Conference Computer Assisted Radiology and Surgery (CARS'01) [C], Berlin,Germany, June 2001:611~616. 被引量:1
  • 6[6]Lee Chien-cheng, Chung Pau-choo, Recognizing abdominal organs in CT images using contextual Neural Network and Fuzzy rules [A]. In: Proceedings of the 22 Annual Engineering of Medicine and Biology Society International Conference [C],Chicago Illinois USA, 2000:1745 ~ 1748. 被引量:1
  • 7[7]Koss J E, Newman F D. Abdominal organ segmentation using texture transforms and Hopfield Neural Network [J]. IEEE Transactions on Medical Imaging, 1999,18(7): 640~648 . 被引量:1
  • 8[8]Kung S Y, Hu Y H. A Frobennius approximation reduction method for determining optimal number of hidden units[A]. In:Proceedings of Internatioanal Joint Conference on Neural Networks [C], Seattle,WA, USA, 1991. 被引量:1
  • 9Liang Zhengrong,IEEE Engineering Medicine Biology,1993年,3卷,3期,81页 被引量:1
  • 10Li C,IEEE Trans Med Imaging,1993年,12卷,12期,740页 被引量:1

共引文献15

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部