期刊文献+

La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5)贮氢合金的制备和MH电极性能研究 被引量:32

Preparation of Hydrogen Storage Alloy La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) and Its Electrochemical Properties
下载PDF
导出
摘要 采用高频感应熔炼方法制备了 PuNi3型 La0.67Mg0.33Ni2.5Co0.5 合金;用 X 射线衍射分析和电化学方法研究了添加不同 Mg 含量以补偿 Mg 元素烧损时合金的组织结构和电化学性能。X 射线衍射分析(XRD)表明,铸态合金由 PuNi3型主相和少量的 CaCu5型第二相组成,铸态合金经 1 223 K 和 10 h 退火处理后,CaCu5 型第二相可明显减少,其中 Mg增加 10%时得到纯度较高的 PuNi3 型组织。电化学测试表明,增加适当 Mg 含量和进行退火热处理能明显提高和改善合金电极容量、循环稳定性和大电流放电性能。与 AB5型和 AB2型 Laves 相贮氢合金比较,PuNi3型 La0.67Mg0.33Ni2.5Co0.5贮氢合金具有电极容量高及优良的大电流放电性能。 The La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy with PuNi3-type was prepared using induction melting followed by heating treatment. In order to compensate Mg loss during alloy melting, the different mass percent Mg was supplemented into the melt. The microstructure and electrochemical properties of the alloys were investigated by using XRD and electrochemical method. The results show that the ingot is composed of main phase with PuNi3 type structure and a little second phase with CaCu5 structure. After heat treatment at 1 223 K for 10 h, the amount of the second phase in the annealed alloy is remarkably decreased and a more homogenous and purified PuNi3 type microstructure is obtained in the case of 10% Mg supplement. The electrochemical analyses show that the electrochemical properties of the alloy, such as activation, capacity, cycling stability and discharge ability at different current density, are well improved by supplementing proper Mg and annealing heat treatment. In comparison with AB(5) type and AB(2) with laves phase hydrogen storage alloys, the La0.67Mg0.33Ni2.5Co0.5 alloy has high capacity and quite good kinetics of electrochemical reaction.
机构地区 兰州理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2004年第12期1283-1286,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金资助项目(50171021)
关键词 La0.67Mg0.33Ni2.5Co0.5贮氢合金 合金制备 热处理 晶体结构 电化学性能 La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy induction melting heat treatment crystal structure electrochemical properties
  • 相关文献

参考文献10

  • 1[2]Ovshinsky S R, Fetcenko M A, Ross J. Science[J], 1993, 260:176 被引量:1
  • 2[3]Reilly J J, Adzic G D, Johnson J R et al. J Alloys Comp[J],1999, 293~295:569~582 被引量:1
  • 3[4]Dong-Myung Kim, Kuk-Jin Jang, Jai-Young Lee. J Alloys Comp[J], 1999, 293~295:583~592 被引量:1
  • 4[5]Don T Cromer, Clayton E Olsen. Acta Crysta[J], 1959, 12:689 被引量:1
  • 5[6]Parthe E, Lemaire R. Acta Cryst[J], 1975, B31:1 879 被引量:1
  • 6[7]Yartys V A et al. IntJ Hydrogen Energy[J], 1982, 7:957~965 被引量:1
  • 7[8]Kadir K, Sakai T, Uehara I. J Alloys Comp[J], 1997, 257:115~121 被引量:1
  • 8[9]Inui H, Yamamoto T, Zhang Di et al. J Alloys Comp[J], 1999,203~295:140~145 被引量:1
  • 9[10]Kohno T, Yoshida H, Kawashima F et al. J Alloys Comp[J],2000, 311: L5~L7 被引量:1
  • 10[11]Chen J, Kuriyama N, Takeshita H T et al. Electrochemical and Solid-State Letters[J], 2000, 3(6): 249~252 被引量:1

同被引文献425

引证文献32

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部