期刊文献+

(2,ξ)—型Cantor集的Minkowski容度 被引量:2

THE MINKOWSKI CONTENT OF (2,ξ)-TYPE CANTOR SET
下载PDF
导出
摘要  在本文中我们研究了(2,ξ)—型Cantor集的Minkowski容度,并且计算出了它的上Minkowski容度和下Minkowski容度,由此我们推出它的Minkowski容度是不存在的. In this paper, we studied the Minkowski content of (2,ξ)-type Cantor set and calculated its upper and lower Minkowski contents. Thus, we can see the Minkowski content of (2,ξ)-type Cantor set does not exist.
作者 蒋锋 杨华
出处 《佳木斯大学学报(自然科学版)》 CAS 2005年第1期102-106,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金资助项目(No.10375027).
关键词 MINKOWSKI容度 (2 ζ)-型Cantor集 Minkowski维数 Minkowski content (2, ξ)-type Cantor set Minkowski dimension
  • 相关文献

参考文献7

  • 1M. L. LAPIDUS & C. POMERANCE. The Pdemann zeta - function and the one - dimensional Weyl - Berry conjecture for fractal drums[J]. Prec. London Math. Soc. 1993, 66, 41 -69. 被引量:1
  • 2M. V. Berry. Some geometric aspects of wave motion, wavefront dislocations, diffraction catastrophes, diffractals in Geometry of the Laplace Operator[J]. Proc. Pure. Math. 1980, Vol.36, 13-38. 被引量:1
  • 3K.J.FALCONER. Techniques in Fractal Geometry [M]. Chichester: John Wiley & Sons, 1997. 被引量:1
  • 4K.J.FALCONER.On the Minkowski Measurability of Fractals[J]. Proc. Amer. Math. Soc. 1995, vol. 123, No. 4, 1115- 1124. 被引量:1
  • 5K.J. FALCONER. Fractal Geometry- Mathematical Foundations and Applications[M]. Chichester: John Wiley & Sons, 1990. 被引量:1
  • 6G.A.EDGAR.Integral, Probability, and Fractal Measures[M]. New York:Sprlnger-Verlag, 1997. 被引量:1
  • 7P. MATITLA. Gecmetry of sets and measures in Euclidean space[M]. England: Cambridge University Press, 1995. 被引量:1

同被引文献9

  • 1陈世荣.一类集合的 MINKOWSKI 容度[J].数学杂志,1993,13(1):1-14. 被引量:10
  • 2[1]M V Berry.Some geometric aspects of wave motion,wavefront dislocations,diffraction catastrophes,diffractals,in Geometry of the Laplace Operator[J].Proc.Pure.Math.,1980,36:13-38. 被引量:1
  • 3[2]M L Lapidus,C Pomerance.The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums[J].Proc.London Math.Soc.1993,66:41-69. 被引量:1
  • 4[6]John M,Neuberger.Computing eigenfunctions on the Koch Snowflake:A new grid and symmetry[J].Journal of Computational and Applied Mathematics,2006,191:126-142. 被引量:1
  • 5[7]Steven Homolya.Generalisation of the modified Weyl Berry conjecture for drums with jagged boundaries[J].Physics Letters A,2003,318:380-387. 被引量:1
  • 6BERRY M V. Some Geometric Aspects of Wave Motion, Wavefront Dislocations,Diffraction Catastrophes, Diffractals, in Geometry of the Laplace Operator [J ]. Proc Purc Math, 1980,36 : 13-38. 被引量:1
  • 7LAPIDUS M L, POMERANCE C. The Riemann Zeta-function and the One-dimensional Weyl-Berry Conjecture for Fractal Drums [J ]. Proc London Math Soc, 1993,66 : 41-69. 被引量:1
  • 8STEVEN H. Generalization of the Modified Weyl Berry Conjecture for Drums with Jagged Boundaries [J]. Physics Letters A, 2003,318 : 380-387. 被引量:1
  • 9JOHN M, NEUBERGER. Computing Eigenfunctions on the Koch Snowflake :A New Grid and Symmetry [J ]. Journal of Computational and Applied Mathematics,2006,191 : 126-142. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部