摘要
Let G be a k-regular connected graph of order at least six. If G has girth three, its 3-restricted edge connectivity λ3(G) ≤3k-6. The equality holds when G is a cubic or 4-regular connected vertex-transitive graph with the only exception that G is a 4-regular graph with λ3(G) = 4. Furthermore, λ3(G) = 4 if and only if G contains K4 as its subgraph.
设G是阶至少为6的k正则连通图.如果G的围长等于3,那么它的3限制边连通度 λ3(G)≤3k-6.当G是3或者4正则连通点可迁图时等号成立,除非G是4正则图并且 λ3(G)=4.进一步,λ3(G)=4的充分必要条件是图G含有子图K4.
基金
NationalNaturalScienceFoundationofChina(10271105)FoundationofEducationMinistryofFujian(JA03147)MinistryofScienceandTechnologyofFujian(2003J036)