摘要
研究了如下非线性偏差分方程 :(aAm +1 ,n +bAm ,n+1 +cAm ,n) k-(dAm ,n) k+ ui =1pi(m ,n)Akm -σi,n -τi =0这里a ,b ,c ,d∈ (0 ,∞ ) ,d>c ,k =q/p ,p ,q为正奇整数 ,u为正整数 ,pi(m ,n) ,(i =0 ,1 ,2 ,…u)是正实数序列 .σi,τi ∈N0 ={ 1 ,2 ,… } ,i=1 ,2 ,… ,u.
In this paper,we consider certainnonlinear partial difference equations ((aA_(m+1,n)+bA_(m,n+1)+cA_(m,n)))~k-((dA_(m,n)))~k+ui=1p_(i)(m,n)A^k_(m-σ_(i),n-τ_(i))=0where a,b,c,d∈(0,∞), d>c, k=q/p, p, q are positiveodd integers, u is a positive integer, p_(i)(m,n),(i=0,1,2,…u) are positive real sequences.σ_i,τ_i∈N_(0)={1,2,…},i=1,2,…,u. A new comparison theorem for oscillation of the above equation is obtained.
出处
《湘潭大学自然科学学报》
CAS
CSCD
2004年第4期109-114,共6页
Natural Science Journal of Xiangtan University
基金
湖南省自然科学基金资助项目 (0 2JJY2 0 0 3)
关键词
非线性偏差分方程
比较定理
最终正解
Nonlinear partial difference equations
comparison theorem
eventually positive solutions