期刊文献+

Z_2~k-线性负循环码 被引量:2

Linear negacyclic codes over Z_(2~k)
下载PDF
导出
摘要 Wolfmann引进了 Z4-负循环码 .Zn4 上的负移位γ是指 Zn4上的满足γ( a0 ,a1 ,… ,an- 1 ) =( - an- 1 ,a0 ,a1 ,… ,an- 2 )的置换 ;长度为 n的 Z4-负循环是指 Zn4的子集 C满足γ( C) =C.他给出了在环 Z4[x]/( x2 + 1 )中多项式表示的 Z4-负循环码 ;证明了 Z4-线性负循环码 Gray映射下的象是二元距离不变量循环码等 .本文有两个目的 :一是给出在环 Z2 k[x]/( x2 + 1 )中的多项式表示的 Z2 k-负循环码及其对偶 ;二是由 Z4-负循环码在 Gray映射下的象构造出具有优良关连性质的二元周期序列族 . Wolfmann introduced negacyclic codes over Z_4. The negashift γof Z^n_4 is defined as the permutation of Z^n_4 such that γ(a_0,a_1,\:,a_(n-1))=(-a_(n-1),a_0,a_1,\:,a_(n-2)) and a negacyclic code of length n over Z_4 is defined as a subset C of Z^n_4 Such that γ(C)=C. Wolfmann produced negacyclic Z_4~codes by ploynomial represent in the ring Z_4[x]/(x^2+1),and proved that the Gray image of a linear negacyclic code over Z_4 of length n is a binary distance invariant cyclic code. The purpose of this paper is twofold. First, negacyclic Z_(2~k)~codes by polynomial represent is the ring Z_(2~k)[x]/(x^2+1) and their dual are produced. Second, binary periodic sequences with good correlation properties from negacyclic Z_4~code via Gray map are constructed.
作者 胡万宝
出处 《纯粹数学与应用数学》 CSCD 2004年第3期219-224,共6页 Pure and Applied Mathematics
基金 安徽省教育厅科研基金资助 ( 2 0 0 4kj2 71)
关键词 Z4-线性负循环码 Galois环GR(2^k m)Gray映射 二元周期序列 Z_4~linear negacyclic code, Gray map, Galois ring GR(2~k,m), binary periodic sequences
  • 相关文献

参考文献13

  • 1Wolfmann J. Negacyclic and cyclic codes over Z4[J]. IEEE Trans-IT,1999,45(7):30-319. 被引量:1
  • 2Hammons A R,Kumar P V,Calderbank A R,Slone N J A,Sole P. The Z4-linearity of Ker-dock, Preparata, Goethals, and related code[J]. IEEE Trans-IT,1994,40(2):301-319. 被引量:1
  • 3Kanwar P. Cyclic codes over the integers modulo Zpm[J]. Finite fields and their applications, 1997(3):334-352. 被引量:1
  • 4Zhe-Xian Wan. Quaternary codes[M]. Singapore, World Scientific,1997. 被引量:1
  • 5Kumar P V,Helleseth T, Calderband A R,Hammons A R. Large families of quaternary sequence with low correlation[J]. IEEE Trans.-IT,1996,42(2):579-592. 被引量:1
  • 6Nechev. Kerdock code in a cyclic form[J]. Discrete Math.Appl.,1989,24(1):123-139. 被引量:1
  • 7Ca derbank A R,Sloane. Modular and p-adic cyclic codes[J].Des.codes,Cryptogr,1995,6(1):21-35. 被引量:1
  • 8Calderbank A R,W Li, Poonen B. A-2-adic approach to the analysis of cyclic codes[J]. IEEE Trans.-IT,1997,43(3):977-986. 被引量:1
  • 9Blackford J T,Ray-Chaudhuri D K. A transform approach to permutation groups of cyclic codes over Galois rings[J]. IEEE Trans.-IT,2000,46(7):2350-2358. 被引量:1
  • 10Carlet C. Z2k-linear codes[J]. IEEE Trans.-IT,1998,44(4):1543-1547. 被引量:1

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部