期刊文献+

当前统计概率数据关联算法 被引量:3

Current Statistical Probabilistic Data Association Algorithm
下载PDF
导出
摘要 目标跟踪领域的一个研究重点是如何解决在密集杂波环境下机动目标的跟踪问题。机动目标跟踪的关键是解决目标模型的不确定性,而密集杂波环境则使这个问题变得更加复杂。针对这一问题,提出一种当前模型概率数据互联算法。该算法将当前模型算法与概率数据互联相结合,在使用概率数据互联算法的同时,利用当前模型算法对目标出现的机动进行自适应滤波。最后,给出了算法的仿真分析,仿真结果说明该方法能够有效地跟踪杂波环境中的机动目标。 How to track a maneuvering target is a key problem of target tracking in clutter. The difficulties of the maneuvering target tracking lies in the uncertainty of state model, and the clutter make it more complex. The paper presents a current statistical probabilistic data association algorithm for tracking a maneuvering target in clutter. The algorithm combines current statistical algorithm with probabilistic data association algorithm. When this algorithm estimate the state of a maneuvering target with current statistical algorithm, the probabilistic data association algorithm is used to resolve association problem. At last, a Monte Carlo simulation is used to analyze the performance of the method. And the results suggests this algorithm can estimate a maneuvering target in clutter efficiently.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第1期4-7,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金资助项目(60172033) 全国优秀博士论文作者专项基金项目(200036) 高校骨干教师基金资助项目(3240)
关键词 机动目标 当前统计模型 概率数据互联 跟踪 maneuvering target current statistical model probabilistic data association tracking
  • 相关文献

参考文献10

  • 1周宏仁等著..机动目标跟踪[M].北京:国防工业出版社,1991:366.
  • 2何友等著..多传感器信息融合及应用[M].北京:电子工业出版社,2000:336.
  • 3Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. New York: Academic press, 1988. 被引量:1
  • 4Kirubarajan T, Bar-Shalom Y. IMMPDA for radar mangement and tracking benchmark with ECM[J]. IEEE Transactions on Aerospace and Electronics, 1998, 1 115-1 132?A. 被引量:1
  • 5Blom H A P. A sophisticated tracking algorithm for ATC surveillance data[C]. Proc. International Radar Conf., Paris,France, 1984?A. 被引量:1
  • 6Bar-Shalom Y. Multitarget multisensor tracking, advanced application[M]. New York: Artech Houseinc, 1992?A. 被引量:1
  • 7Birmiwal K, Bar-Shalom Y. Maneuver target tracking a cluttered environment with a variable dimension filter[J].IEEE Trans. Aerospace& Electronic System, 1984, AES-20:635-645?A. 被引量:1
  • 8Fortmann T E, Bar-Shalom Y, Scheffe M, et al. Detection thresholds for tracking in clutter-a connection between estimation and signal processing[J]. IEEE Trans. Automatic Control, 1985, AC-30:221-228?A. 被引量:1
  • 9Fortmann T E, Bar-Shalom Y, Scheffe M, et al. Detection thresholds for multitarget tracking in clutter[C]. Proc.20th IEEE Conf. on Decision & Control, San Diego, CA, 1981?A.?A. 被引量:1
  • 10Raroaq M, Bruder S. Information type filters for tracking a maneuvering target[J]. IEEE Trans. on AES, 1990, 26:441-454?A?A. 被引量:1

同被引文献17

  • 1周红波.一种新的改进“当前”统计模型[J].舰船电子工程,2007,27(1):54-57. 被引量:4
  • 2Scala B F L, PulIord G W. An Analysis of Manoeuvring Target Detectors and Trackers for Over-The-Horizon Radar [R]. CSSIP Report No. 29/96 to High Frequency Radar Division, 1996. 被引量:1
  • 3Gad A,Majdi F,Farooq M. A Comparison of Data Association Techniques for Target Tracking in Clutter [C]//IEEE, 2002 Proceedings of the Fifth International Conference on Information Fusion, Canada, 2002. 被引量:1
  • 4Pulford G W,Seala 13 F L. Over-the-horizon Radar Tracking Algorithm Using the Viterbi Algorithm- Third report to DSTO[R]. CSSIP Report No. 27/ 95,1995. 被引量:1
  • 5Pulford G W,Scala B F L. Over-the-horizon Radar Tracking Using the Viterbi Algorithm-Second Report to High Frequency Radar Division [R]. CSSIP Report No. 16/95, 1995. 被引量:1
  • 6Scala B F L, Pulford G W. Implementation of a Viterbi Data Association Tracker For Over-TheHorizon Radar [R]. CSSIP Report No 12/97, 1997. 被引量:1
  • 7刘慧霞.天波超视距雷达数据处理若干关键技术研究[D].西安:西北工业大学,2007. 被引量:1
  • 8Bar-Shalom Y.Multitarget multisensor tracking,advanced application[M].New York:Artech Houseinc,1992. 被引量:1
  • 9ELIAS-FUSTE AR,BROQUETAS B A,ANTEQUERA J P,et al.CFAR data fusion center with inhomogeneous receivers[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(2):276-284. 被引量:1
  • 10ZHOU Yi-feng,HENRY L.An exact maximum likelihood registration algorithm for data fusion[J].IEEE Trans.Signal Processing,1997,45(6):1560-1572. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部