摘要
设D是单位圆{z||z|<1},T为单位圆周{z||z|=1}.对于f∈C(T),我们记L_n(f,z)为在n+1次单位根{e^(2kπ/n+1)i}~n_k=0上对f(z)的n次插值多项式.自然的L_n(f,z)在D内解析,因此,当f不能解析延拓到D内时,就不可能保证L_n(f,z)一致收敛于f.甚至,存在着f∈C(T),且f是某个D内解析函数的边值,但L_n(f,z)在T上发散.
In this paper, it is show that the interpolants of continuous functions converge to the analytic part in the sense of Bergman norm. An estimation of the rate of convergence is given.