期刊文献+

基于奇异谱分析的降噪方法及其在计算最大Liapunov指数中的应用 被引量:7

Denoising Method Based on Singular Spectrum Analysis and Its Applications in Calculation of Maximal Liapunov Exponent
下载PDF
导出
摘要  基于奇异谱分析对信号的自适应滤波特性,提出了一种降低混沌信号噪声的算法,这个算法首先求得信号的各阶经验正交函数(EOF)和主分量(PC),然后用经验正交函数和主分量重构信号,根据重构信号的奇异谱选择最优的重构阶次以获得降噪后的信号· 在计算动力系统最大Lia punov指数时,由于噪声的存在会降低计算的精度,因此将提出的降噪算法应用于最大Liapunov指数的计算中· 通过对Henon映射和Logistic映射这两个典型混沌系统最大Liapunov指数的计算。 An algorithm based on the data-adaptive filtering characteristics of singular spectrum analysis (SSA) is proposed to denoise chaotic data. Firstly, the empirical orthogonal functions (EOFs) and principal components (PCs) of the signal were calculated, reconstruct the signal using the EOFs and PCs, and choose the optimal reconstructing order based on sigular spectrum to obtain the denoised signal. The noise of the signal can influence the calculating precision of maximal Liapunov exponents. The proposed denoising algorithm was applied to the maximal Liapunov exponents calculations of two chaotic system, Henon map and Logistic map. Some numerical results show that this denoising algorithm could improve the calculating precision of maximal Liapunov exponent.
作者 刘元峰 赵玫
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第2期163-168,共6页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展规划资助项目(G1998020321) 国家863资助项目(2002AA412410)
关键词 奇异谱分析 降噪 最大Liapunov指数 混沌系统 singular spectrum analysis denoising maximal Liapunov exponent chaotic system
  • 相关文献

参考文献7

  • 1Broomhead D S, King G P. Extracting qualitative dynamics from experimental data[ J ]. Physica D,1986,20(2/3) :217-236. 被引量:1
  • 2Vautard R, Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series[ J]. Physica D, 1989,35(3) :395-424. 被引量:1
  • 3Vautard R,Yiou P,Ghil M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals[J].Physica D, 1992,58(1/4): 95-126. 被引量:1
  • 4Wolf A, Swift J B, Swinney H L, et al. Determining Liapunov exponents from a time series[ J]. Physica D, 1985,16(3) :285-297. 被引量:1
  • 5Kantz H, Schreiber T. Nonlinear Time Series Analysis [ M]. New York: Cambridge University Press,1997. 被引量:1
  • 6Rosenstein Michael T, Collins James J,De Luca Carlo J. A practical method for calculating largest Liapunov exponents from small data sets[J]. Physica D, 1993,65(1/2): 117-133. 被引量:1
  • 7Kantz Holger. A robust method to estimate the maximal Liapunov exponent of a time series [ J ].Physics Letters A, 1994,185( 1 ): 77-87. 被引量:1

同被引文献65

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部