期刊文献+

电极浸渍电解液方式对双电层电容器的影响 被引量:1

The influence of carbon electrode immersed with KOH by different methods on EDLC
下载PDF
导出
摘要 以活性碳纤维(ACF)电极为研究对象,用质量分数为0.2的氢氧化钾(KOH)作为电解液制作KOH-ACF浸渍电极。研究了浸泡时间、搅拌、真空度、温度等的影响因素,目的使电解液能更有效的进入ACF电极。研究发现,浸泡时间长、真空度高和温度低都有利于电解液进入电极,搅拌可以加快浸泡吸附的速度。制成的双电层电容器比电容可达70F/g。 ACF and 0.2 KOH solution were used as electrode material and electrolyte, respectively, for making electric double-layer capacitor. Different methods of electrolyte immersion into the electrode, such as time, stirring, vacuuming electrode, temperature, were investigated in order to increase the effectiveness of immersion of KOH-ACF electrode. The specific capacitance of resultant EDLC could be as high as 70F/g.
机构地区 同济大学化学系
出处 《高科技纤维与应用》 CAS 2004年第6期24-27,共4页 Hi-Tech Fiber and Application
关键词 活性碳纤维 氢氧化钾电解液 电极 双电层电容器 真空度 电解液 ACF KOH electrolyte electrode EDLC degree of vacuuming
  • 相关文献

参考文献6

二级参考文献35

  • 1松村雄次.超级活性炭的开发[J].化学与工业,1990,43(3):358-358. 被引量:4
  • 2西野敦.用活性炭纤维制备的双层电容器[J].炭素,1988,132:57-57. 被引量:2
  • 3江奇 卢晓英 等.碳纳米管电化学超级电容器性能初探.第五届全国新型碳材料学术研讨会论文集[M].-,2001,10.371. 被引量:1
  • 4电子部四十九所,(Q/UNTKN121-1996)CSC-4B型系列超大容量电容器〔S) 被引量:1
  • 5ZHENG J P;Huang J;Jow T R.The limitations of energy density of electrochemical capacitors[J],1997(06). 被引量:1
  • 6Faggioli Eugenio;Rena Piergeorgio;Danel Veronique.Supercapacitors for the energy management of electric vehicles[J],1999(2). 被引量:1
  • 7ZHENG J P;Cygan P J;Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J],1995(08). 被引量:1
  • 8ZHENG J P;Jow T R;Jia Q X.Proton insertion into ruthenium oxide film prepared by pulsed laser deposition[J],1996(03). 被引量:1
  • 9ZHENG J P;Jow T R.High energy and high power density electrochemical capacitors[J],1996(02). 被引量:1
  • 10Zheng Jim P.Ruthenium oxide-carbon composite electrode for electrochemical capacitors[J],1999(08). 被引量:1

共引文献101

同被引文献27

  • 1Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells [J]. Environmental Science & Technology, 2008, 42(21): 8101-8107. 被引量:1
  • 2Logan B E. Exoetectrogenic bacteria that power microbial fuel cells [J]. Nature Reviews Microbiology, 2009, 7(5): 375-381. 被引量:1
  • 3Khera J, Chandra A. Microbial fuel cells: recent trends [J]. Proceedings of the National Academy of Sciences, lndia Section A: Physical Sciences, 2012, 82(1): 31-41. 被引量:1
  • 4Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environmental Science & Technology, 2005, 39(14) 5488-5493. 被引量:1
  • 5Mo , Liang P, Huang X, et al. Enhancing the stability of power generation of single - chamber microbial fuel cells using an anion exchange membrane [J]. Journal of Chemical Technology and Biotechnology, 2009, 84(12): 1767-1772. 被引量:1
  • 6Kim J R, Cheng S, Oh S E, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells [J]. Environmental Science & Technology, 2007, 41(3): 1004-1009. 被引量:1
  • 7Rozendal R A, Hamelers H V, Buisman C J. Effects of membrane cation transport on pH and microbial fuel cell performance [J]. Environmental Science & Technology, 2006, 40(17): 5206-5211. 被引量:1
  • 8Zhang L, Zhu X, Li J, et al. Biofilm fon'aation and electricity generation of a microbial fuel cell started up under different external resistances [J]. Journal of Power Sources, 2011,196(15): 6029-6035. 被引量:1
  • 9Hatzell M C, Kim Y, Logan B E. Powering microbial electrolysis ceils by capacitor circuits charged using microbial fuel cell [J]. Journal of Power Sources, 2013, 229:198-202. 被引量:1
  • 10Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environmental Science & Technology, 2004, 38(7): 2281-2285. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部