期刊文献+

一种基于梯度的新自适应无限冲击响应限波器算法

A New Gradient-Based Algorithm for Adaptive IIR Notch Filters
下载PDF
导出
摘要 基于变步长类最小均方(VS-LMS-L)算法和无记忆非线性梯度(MNG)算法,设计了一种变步长无记忆非线性梯度(VS-MNG)算法.新算法在频率估计均方误差(MSE)和收敛速度上获得增进的性能,而且具有很好的鲁棒性.仿真结果显示了设计算法的优越性. A new gradient-based algorithm for adaptive Infinite Impulse Response (IIR) notch filters (VS-MNG) was proposed, which is based on a variable step-size LMS-like (VS-LMS-L) algorithm and memoryless nonlinear gradient (MNG) algorithm. The new algorithm has an improved performance in frequency estimation mean square error and convergence speed, and bears good robustness. Simulations are provided to show the superiority of the proposed algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第12期1989-1991,共3页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60172018)
关键词 无限冲击响应限波器 均方误差 梯度 自适应 infinite impulse response(IIR) notch filter mean square error (MSE) gradient adaptive
  • 相关文献

参考文献5

  • 1Chicharo J, Ng T. Gradient-based adaptive IIR notch filtering for frequency estimation[J]. IEEE Trans on Acoust, Signal Processing, 1990,38(5): 769-777. 被引量:1
  • 2Cho N, Lee S. On adaptive lattice notch filter for the detection of sinusoids[J]. IEEE Trans on Circuits and Systems, 1993, 40(7): 405-416. 被引量:1
  • 3Punchalard R, Benjangkaprasert C, Anantrasirichai N, et al. A robust variable step-size LMS-like algorithm for a second-order adaptive IIR notch filter for frequency detection[A]. Proceedings of the 3rd Workshop on Signal Processing Advance in Wireless Co 被引量:1
  • 4Xiao Y, Tadokoro Y, Kobayashi Y. A new memoryless nonlinear gradient algorithm for a second-order adaptive IIR notch filters and its performance analysis[J]. IEEE Trans on Circuits and Systems, 1998, 45(4): 462-472. 被引量:1
  • 5Benjangkaprasert C, Tupchai P, Punchalard R, et al. A fast convergence and robust algorithm for adaptive IIR notch filter[A]. Proceedings of the 8th International Conference on Neural (ICONIP '01)[C].Shanghai, China: APNNA, 2001. 449-452. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部