摘要
本文给出 4 类含有两个参数的几乎紧优双环网的无限族.
In this paper, the following theorem is proved: Theorem Let i ∈{1, 2, 3}, a , b and e be positive integers. And let B(a, b) = ab +1? (a + b + i)2 , t = t (a, b; e) = (2 a + b + 2 i ? 2) e ? a ?i + 2 , 3 t + 3B (a,b) ? i2 + i ?1 > 0 , n (a, b; t) = 3 t2 + 2 it + B (a,b) , s (a, b; t) = (3 e ?1) t + (b ? a + i +1) e ? b ? i ?1. If one of the following four conditions holds: (1) a ?b ≡ 1 (mod 4) , (2) i = 1, 3, a ≡ 0 (mod 4), b ≡ 1 (mod 2) , (3) i = 2, a ?b ≡ 2 (mod 4) , (4) i = 3, a ≡ b (mod 3) then G (n (a, b; t), s (a, b; t)) are nearly tight optimal double loop networks with two parameters a and b.
出处
《漳州师范学院学报(自然科学版)》
2004年第4期8-10,共3页
Journal of ZhangZhou Teachers College(Natural Science)
基金
福建省教育厅科技计划项目(JA02246)