期刊文献+

巴氏距离和K-L变换结合的特征选择 被引量:7

Feature Selection Based on the Composition of Bhattacharyya Distance and K-L Decomposition
下载PDF
导出
摘要 该文提出巴氏距离(BhattacharyyaDistance)和K-L(Karhunen-Loeve)变换结合的特征选择。采用巴氏距离特征选择眼3,5演的迭代算法,可以获得最小错误率上界。当特征维数高时,为了减少巴氏距离特征选择计算时间,对样本先进行K-L变换,将特征降低到中间维数。然后进行巴氏距离特征选择,降低到结果的维数。用基于MNIST手写体数字库的试验表明,该文方法比单纯用巴氏距离特征选择计算时间大大减少,并比主分量方法(即单纯使用K-L变换)特征选择的错误率小得多。 This paper presents a smart feature selection method in which authors compose the merits of K-L decomposition and Bhattacharyya Distance.First,this paper uses K-L Decomposition to remove noises and features that do not play import roles in separating classes.Then taking advantage of the direct relationship between Bhattacharyya Distance and the upper bound on Bayes error probability,the paper uses recursive algorithm to obtain the effective features to minimize the upper bound on error probability.Authors uses the method in MNIST.The result shows the method is not only workable but far more effective than the method of K-L decomposition alone.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第36期90-92,共3页 Computer Engineering and Applications
关键词 巴氏距离 K-L变换 主分量方法 特征选择 Bhattacharyya Distance,K-L decomposition,PCA,feature selection
  • 相关文献

参考文献6

二级参考文献7

共引文献75

同被引文献67

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部