期刊文献+

模糊线性支持向量回归机 被引量:2

Fuzzy Liner Regression Support Vector Machines
下载PDF
导出
摘要 该文研究了当训练点的输出为三角模糊数时,支持向量回归机的构建问题。首先将模糊回归问题转化为模糊分类问题,并将求模糊最优分类超平面问题转化为求解带有模糊决策的机会约束规划问题。利用基于模糊模拟的遗传算法求解带有模糊决策的机会约束规划,得到模糊最优分类超平面(模糊方程),解模糊方程得到模糊回归函数。在此基础上,得出模糊线性支持向量回归机(算法)。从而较好地解决了支持向量机中含有模糊信息的模糊回归问题。最后,给出显示模糊线性支持向量回归机特点的模糊支持向量集的定义。 This paper focuses on the construction of Support Vector Regression when the outputs of training points are triangle fuzzy numbers.First this paper transforms fuzzy regression problem to fuzzy classification problem,then transforms it to chance constrained programming with fuzzy decision,and solves this programming using fuzzy simulation based evolutionary algorithm to get the optimal classification hyper-plane(fuzzy equation),at last solves the fuzzy equation to derive the fuzzy regression function.Based on this,the paper proposes the Fuzzy Linear Support Vector Regression (FLSVR).This can deal with regression problem with fuzzy information well.At the end,the definition of fuzzy support vector set is given,which can declare the characters of FLSVR.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第36期54-57,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:10371131)
关键词 模糊规划 模糊回归 模糊模拟 模糊数 fuzzy programming,fuzzy regression,fuzzy simulation,fuzzy numbers
  • 相关文献

参考文献11

  • 1Cristianim N,Shawe-Taylor J.Introduction to Support Vector Machine [M].Cambridge University Press,2000 被引量:1
  • 2Zadeh L A.Fuzzy Sets as a Basis for a Theory of Possibility[J].Fuzzy Sets and Systems, 1978; (1) :3~28 被引量:1
  • 3Liu B,Iwamura K.Fuzzy Programming with Fuzzy Decisions and Fuzzy Simulation Based Evolutionary Algorithm[R].Technical Report,1997 被引量:1
  • 4Dubios D,Prade H.Operations on Fuzzy Numbers[J].International Journal for Systems Sciences, 1978; (7) :613~626 被引量:1
  • 5Buckley J ,Qu Y.Solving Linear and Quadratic Fuzzy Equations[J].Fuzzy Sets and Systems, 1990; (38) :43~59 被引量:1
  • 6崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 7张文修.模糊数学基础[M].西安:西安交通大学出版社,1995.. 被引量:8
  • 8刘宝碇,赵瑞清著..随机规划与模糊规划[M].北京:清华大学出版社,1998:255.
  • 9徐增坤著..数学规划导论[M].北京:科学出版社,2000:214.
  • 10胡劲松.模糊指派问题求解方法研究[J].系统工程理论与实践,2001,21(9):94-97. 被引量:12

二级参考文献15

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995 被引量:1
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297 被引量:1
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136 被引量:1
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998 被引量:1
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998 被引量:1
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953 被引量:1
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31 被引量:1
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997 被引量:1
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285 被引量:1
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184 被引量:1

共引文献119

同被引文献34

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部