期刊文献+

状态空间中特征值D域稳定性的结构奇异值判据

A μ-Measurement for Statespace D-region Stability of Eigenvalues
下载PDF
导出
摘要 状态空间中,状态矩阵A在扰动矩阵影响下,特征值能否保持在一个预先指定的区域D中,这就是状态空间中的D域稳定性问题。本文从结构奇异值在状态空间中的对应形式出发,研究了状态空间中的D域稳定性问题.通过推广Small-μ定理,建立了状态空间中的D域稳定性的结构奇异值判据,并给出了算例.最后,分析了结构奇异值判据存在的保守性及其可能改善的途径. Given a desired region D in the complex plane containing the eigenva- lues of a state matrix A, the so-called statespace D-region stability means when A is perturbed by a perturbation matrix E, the eigenvalues of matrix A+E can still remain in region D. In this paper, E is provided to have a structure as E=G△H (G and H are the constant structure matrices, is △ perturbation.) In some other researches, when △ is a full matrix, necessary and sufficient condi- tions have been established. But if △ is further structured, such as that in the con- text of μ-method, these results are conservative. This paper develops a way to cope with the case of a more complicated △ by the generalization of the statespace small-μ theorem. After that, two examples are given to illustrate the advan- tages of the new theorem.
作者 丛山 施颂椒
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1993年第5期73-78,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金
关键词 D域稳定性 结构奇异值 鲁棒控制 Robustness D-region stability structured singular value
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部