期刊文献+

一类结合代数的表示 被引量:3

Representations of a Class of Associative Algebras
下载PDF
导出
摘要 设LC= νi=1Zci,LD= νi=1Zdi 为格,L=LC+LD 为具有对称双线性形式(·,·)的双曲格,A为由eα,di 及关系e0=1,eα+β=eαeβ,dieα-eαdi=(di,α)eα,didj=djdi 生成的结合代数(α,β∈LC,1≤i,j≤ν).结合代数A的表示与顶点代数的表示密切相关.本文构造了一类A 模Mω,并研究了Mω的结构,同时还给出了两个 A 模Mω1 ,Mω2 同构的充要条件,最后研究了Mω的自同构群. Let L_C=νi=1Zc_i,L_D=νi=1Zd_i be lattices,L=L_C+L_D be a lattice with symmetric bilinear form,A be an associative algebra generated by e_α,d_i with relations e_0=1,e_(α+β)=e_αe_β,d_ie_α-e_αd_i=(d_i,α)e_α,d_id_j=d_jd_i(α,β∈ L_C,1≤i,j≤ν).The representations of the associative algebra A play an important role in the study of the representations of the vertex algebra.In this paper we construct a class of A-modules M_ω and study their structure.Then we give the necessary and sufficient condition for the isomorphism of two A-module M_(ω_1),M_(ω_2).Finally we study the automorphism group of M_ω.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期1-4,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10371100) 福建省教育厅科研项目(JB02217) 漳州师院科研基金(SK03003)
关键词 结合代数 表示 自同构群 双线性形式 顶点 充要条件 对称 LC LD 研究 associative algebra vertex algebra module automorphism
  • 相关文献

参考文献9

  • 1叶从峰.量子环面上一类结合代数的表示[J].数学年刊(A辑),2004,25(2):179-188. 被引量:4
  • 2Borcherds R. Vertex algebra, Kae-Moody algebras, and the monster[J]. Proc. Natl. Acad. Sci. USA, 1986, 83:3 068-3 071. 被引量:1
  • 3Berman S, Dong C Y, Tan S B. Representations of a class of lattice type vertex algebras[J]. J. Pure and Applied Algebra,2002,176:27-47. 被引量:1
  • 4Rao S Eswarao Moody R V. Vertex representations for nToroidal Lie algebras and a generalization of the Virasoroalgebras[J]. Comm. Math. Phys. , 1994,159 : 239- 264. 被引量:1
  • 5Moody R V,Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations [J]. Geometriae Dedicata,1990,35:283-307. 被引量:1
  • 6Borcherds R. Vertex algebra, Kac-Moody algebras, and the monster[J]. Proc. Natl. Acad. Sci. USA, 1986, 83:3 068-3 071.?A?A 被引量:1
  • 7Berman S,Dong C Y,Tan S B. Representations of a class of lattice type vertex algebras[J]. J. Pure and Applied Algebra, 2002,176 : 27-47. 被引量:1
  • 8Rao S Eswara, Moody R V. Vertex representations for nToroidal Lie algebras and a generalization of the Virasoro algebras[J]. Comm. Math. Phys. , 1994,159 : 239 - 264. 被引量:1
  • 9Moody R V,Rao S E,Yokonuma T. Toroidal Lie algebras and vertex representations [J]. Geometriae Dedicata,1990,35 : 283- 307. 被引量:1

二级参考文献13

  • 1Frenkel,I.B.,Lepowsky,J.& Meurman,A.Vertex Operator Algebras and the Monster[M],Academic Press,Boston,1989. 被引量:1
  • 2Manin,Y.I.,Topics in Noncommutative Geometry [M],Princeton Univ.Press,Princeton,NJ,1991. 被引量:1
  • 3Moody,R.,Rao,E.& Yokonuma,T.,Toroidal Lie algebras and vertex representations[J],Geometriae Dedicata,35(1990),283 307. 被引量:1
  • 4Rieffel,M.A.,Non-commutative tori-A case study of non-commutative differentiablemanifolds [J],Contemp.Math.,105(1990),191-211. 被引量:1
  • 5Rao,S.E.& Moody,R.,Vertex representations for N-toroidal Lie algebras and ageneralization of the Virasoro algebra [J],Commun.Math.Phys.,159(1994),239-264. 被引量:1
  • 6Su,Y.C.& Zhao,K.M.,Simple Weyl algebra [J],Sci.China,30:12(2002),1057-1063. 被引量:1
  • 7Zhao,K.,Weyl type algebras from quantum tori,preprint. 被引量:1
  • 8Allison,B.,Azam,S.,Berman,S.,Gao,Y.& Pianzola,A.,Extended affine Lie algebrasand their root systems [J],Mem.Amer.Math.Soc.,603(1997),1-122. 被引量:1
  • 9Borcherds,R.,Vertex algebra,Kac-Moody algebras,and the Monster [J],Proc.Natl.Acad.Sci.USA,83(1986),3068-3071. 被引量:1
  • 10Berman,S.& Billig,Y.,Irreducible representations for toroidal Lie algebras [J],J.Algebra,221(1999),188-231. 被引量:1

共引文献3

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部