摘要
设LC= νi=1Zci,LD= νi=1Zdi 为格,L=LC+LD 为具有对称双线性形式(·,·)的双曲格,A为由eα,di 及关系e0=1,eα+β=eαeβ,dieα-eαdi=(di,α)eα,didj=djdi 生成的结合代数(α,β∈LC,1≤i,j≤ν).结合代数A的表示与顶点代数的表示密切相关.本文构造了一类A 模Mω,并研究了Mω的结构,同时还给出了两个 A 模Mω1 ,Mω2 同构的充要条件,最后研究了Mω的自同构群.
Let L_C=νi=1Zc_i,L_D=νi=1Zd_i be lattices,L=L_C+L_D be a lattice with symmetric bilinear form,A be an associative algebra generated by e_α,d_i with relations e_0=1,e_(α+β)=e_αe_β,d_ie_α-e_αd_i=(d_i,α)e_α,d_id_j=d_jd_i(α,β∈ L_C,1≤i,j≤ν).The representations of the associative algebra A play an important role in the study of the representations of the vertex algebra.In this paper we construct a class of A-modules M_ω and study their structure.Then we give the necessary and sufficient condition for the isomorphism of two A-module M_(ω_1),M_(ω_2).Finally we study the automorphism group of M_ω.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第1期1-4,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(10371100)
福建省教育厅科研项目(JB02217)
漳州师院科研基金(SK03003)