期刊文献+

竖直圆环形通道内充分发展自然对流的分析解 被引量:1

Analytical solutions for fully developed natural convection through vertical annuli
下载PDF
导出
摘要 对于均匀加热的竖直圆环形通道内的充分发展自然对流挟热问题,发现了前人分析解不完善的地方,通过运用能量守衡原理得到了封闭形式的分析解并给出了其计算实例。在一个壁面恒热流、另一个壁面绝热的两类热边界条件下,分析解所计算得到的充分发展段的发热壁面温度与实验结果都符合得较好。最后,简述了此分析解存在的误差以及可能产生此误差的原因。 An error in the analytical solutions for fully developed natural convection through uniformly heated vertical annuli provided by previous researchers was found out. New closed-form analytical solutions was obtained based on the energy equilibrium principle, and some computational examples of the new solutions were presented. The temperatures on the heated wall in the fully developed region obtained from the new analytical solutions are in good agreements with the experimental data under two kinds of thermal boundary conditions where one wall is uniformly heated and the other wall is adiabatic. The error of the new analytical solutions and possible reasons for the error were discussed briefly.
作者 刘学军
出处 《热科学与技术》 CAS CSCD 2004年第4期314-317,共4页 Journal of Thermal Science and Technology
关键词 环形通道 分析解 充分发展 自然对流换热 用能 均匀加热 壁面温度 圆环 边界条件 能量 natural convection vertical annuli fully developed analytical solution
  • 相关文献

参考文献6

  • 1[1]AL-ARABI M, EL-SHAARAWI M A I, KHAMIS M. Natural convection in uniformly heated vertical annuli [J]. Int J Heat Mass Transfer, 1987,30(7): 1381-1389. 被引量:1
  • 2[2]MOHANTY A K, DUBEY M R. Buoyancy induced flow and heat transfer through a vertical annulus[J]. Int J Heat Mass Transfer, 1996, 39(10):2087-2093. 被引量:1
  • 3[3]TAKAHASHI K, MORIKAWA T, HARADA Y, et al. Natural convective heat transfer in uniformly heated vertical pipe annuli [J]. Heat Transfer-Asian Research, 2001, 30(8): 676-688. 被引量:1
  • 4[4]EL-SHAARAWI M A I, AL-NIMR M A. Fully developed laminar natural convection in open-ended vertical concentric annuli [J]. Int J Heat Mass Transfer, 1990, 33(9): 1873-1884. 被引量:1
  • 5[5]ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables [M]. Washington: National Bureau of Standards, 1964. 被引量:1
  • 6[6]TUMA J J, WALSH R A. Engineering mathematics handbook[M]. New York: McGraw-Hill, Inc.,1998. 被引量:1

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部