期刊文献+

基于信息熵的油液监测数据特征及磨损故障诊断研究 被引量:2

Study on the Characteristic of Oil Monitoring Data and Wear Fault Diagnosis Based on Information Entropy
下载PDF
导出
摘要 应用信息熵及模糊熵聚类算法对内燃机油液监测数据进行处理,得到了表征设备磨损状态的主特征量,并根据系统输出的数据序列间的Shannon互信息,较为简化地表征系统内部因素间的相互联系程度,提出了将互信息作为监测设备磨损状态变化的重要指标的监测方法,可以准确而敏锐地表征系统的变化,为应用光谱分析等方法监测设备磨损的状态、检测可能的故障及故障定位提供了一种新的分析手段。通过应用到实例分析和故障诊断中,验证了该方法的有效性。 This paper presents the utilization of Shannon Entropy and fuzzy Entropy Clustering on oil monitoring data processing in internal combustion engine. Based on the results of the clusters, the main characteristic elements of spectral analysis are obtained. Through calculating the mutual information according to Shannon's Information Theory, it provides a new analyzing approach for the main wear components and a new measure to monitor wear state and to identify possible fault location. By analyzing two examples, the algorithm and effectiveness are validated for acquiring the oil monitoring information.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2004年第6期566-570,共5页 Transactions of Csice
基金 上海汽车基金资助项目(0204)。
关键词 信息熵 模糊熵聚类 油液监测 磨损 互信息 Information entropy Fuzzy entropy clustering Oil monitoring Wear Mutual information
  • 相关文献

参考文献5

  • 1Shannon C E. A Mathematical Theory of Communication[J]. Bell Syst Tech,1984,27(5): 379-423. 被引量:1
  • 2Munirathnam Srikanth.Probability Density Function Estimation Using the MinMax Measure[J]. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2000,30(1): 77-83. 被引量:1
  • 3Miller Gad,Horn David.Maximum Entropy Approach to Probability Density Estimation[C]. IEEE Int Conf on Knowledge-Based Intelligent Electronic System, 1998. 被引量:1
  • 4Zhao Zhiwei, Li Xueqin,Gunderson R W . A Novel Fuzzy Entropy Clustering Algorithm[C].Proc of the Third IEEE Int Conf on Fuzzy System,1994. 被引量:1
  • 5Vila M A ,Delgado M,Gmee-Skarmeta A F.On the Use of Probability and Possibility Measures in Fuzzy Clustering[C].Proc of the Sixth IEEE Int Conf on Fuzzy Systems,1997. 被引量:1

同被引文献26

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部