期刊文献+

基于学习矢量量化网络的人脸识别

Face Recognition Based on LVQ Networks
下载PDF
导出
摘要 提出利用主元分析 (PCA)和学习矢量量化神经网络 (LVQ)相结合的方法进行人脸识别。在ORL人脸库上的实验证明 ,这种方法的识别效率高 ,对表情和姿态的变化具有一定的鲁棒性 。 This paper proposes a face recognition method based on PCA and LVQ neural networks. PCA is applied to get the eigen vector of the images, then these eigen values are used as the input of the Learning Vector Quantization Networks, and the output of LVQ networks are the result of classification. The experiments on Cambridge ORL database show that this method is more powerful and efficient than the classical Fisherfaces and eigenfaces methods.
作者 严军 王典洪
出处 《舰船电子工程》 2004年第6期99-102,共4页 Ship Electronic Engineering
基金 湖北省自然科学基金资助项目 (编号 :2 0 0 4ABA0 6 8)
关键词 主元分析 神经网络 LVQ 人脸识别 PCA, neural networks, LVQ, face recognition
  • 相关文献

参考文献8

  • 1姚天任,孙洪编..现代数字信号处理[M].武汉:华中理工大学出版社,1999:439.
  • 2[3]Rowley H A, Baluja S, Kanade T. Neural network based face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38 被引量:1
  • 3[4]Kah-Kay Sung, Tomaso Poggio. Example-based learning for Human Face Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(1):39-51 被引量:1
  • 4[5]J. Tanaka, and M.J. Farah, Parts and wholes in face recognition[M]. Quart J Exp Psychol 46A, 1993:225-245 被引量:1
  • 5[6]M. Turk, and A. Pentland. Eigenfaces for recognition[M]. J Cog Neurosci 3, 1991:71-86 被引量:1
  • 6[7]I. Biederman. Recognition-by-components: a theory of human image understanding[M]. Psych Rev 94, 1987:115-147 被引量:1
  • 7刘向东,吴建鑫,陈兆乾,陈世福.人脸自动检测与识别技术的研究及应用[J].计算机应用与软件,2004,21(5):16-17. 被引量:4
  • 8高秀梅,李淑琴,杨静宇.一种广义的K-L变换与人脸识别[J].青岛科技大学学报(自然科学版),2003,24(3):270-272. 被引量:8

二级参考文献20

  • 1Pentland Alex. Looking at people: sensing for ubiquitous and wearable computing [J]. IEEE Trans. Pattern Anal.Machine Intell, 2000, 22(1), 107-119. 被引量:1
  • 2Maxim A,Grudin. On internal representations in face recognition systems[J]. Pattern Recognition, 2000,33(7):1161-1177. 被引量:1
  • 3Turk Matthew, Pentland Alex. Face recognition using Eigenfaces[C]. Proc IEEE Conf. On Computer Vision and Pattern Recognition, 1991, 586-591. 被引量:1
  • 4Hong Zi Quan. Algebraic feature extraction of image for recognition[J]. Pattern Recognition, 1991,24(3):211-219. 被引量:1
  • 5边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12. 被引量:19
  • 6Feng G C,Yuen P C.Multi cues eye detection on gray intensity images.Pattern Recognition,34(5),2001:1033-1046. 被引量:1
  • 7Bruneli R,Poggio T.Face recognition:Features versus templates.IEEE Transactions on pattern analysis and machine intelligence,1993,15(10):1042-1052. 被引量:1
  • 8Tipping M E,Bishop C M.Mixtures of Probabilistic Principal Component Analysers.Neural Computation,11(2),1999:443-482. 被引量:1
  • 9Phillips P J,Wechsler H,Huang J,Rauss P J.The FERET database and evaluation procedure for face-recognition algorithms.Image and Vision Computing,16(5),1998:295-306. 被引量:1
  • 10Moghaddam B,Pentland A.Probabilistic visual learning for object representation.IEEE Transactions on pattern analysis and machine intelligence,19(7),1997:696-710. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部