期刊文献+

高阶非线性效应影响下二阶孤子的衰变 被引量:4

Decay of two-order soliton induced by higher-order nonlinear effects
下载PDF
导出
摘要 数值求解了标准化高阶修正非线性薛定谔方程.对二阶孤子在自陡峭(Self Steepening,简称SS)和自频移(Self FreguencyShift,简称SFS)两种高阶非线性效应影响下的传输特征及原理分别进行了研究,讨论了二阶孤子衰变产生的两个基孤子的峰值强度比与自陡峭参量、自频移参量之间的关系.结果表明,在高阶非线性效应影响下,二阶孤子在单模光纤中传输时会发生衰变,衰变后小振幅基孤子在前,大振幅基孤子在后;在自陡峭效应影响下,衰变后两个基孤子都发生时间轴上的延迟;在自频移效应影响下,衰变后小振幅基孤子发生时间轴上的超前,大振幅基孤子发生时间轴上的延迟;随着高阶非线性效应的增强,衰变产生的小振幅基孤子与大振幅基孤子的峰值强度比逐渐减小,在相同传输距离处,它们的分离程度逐渐增大. Standard form of Higher-Order Nonlinear Schrdinger equation is solved numerically. The characteristic and principle of two-order soliton′s transmission under the effects of self-steepening effect and self-frequency shift effect are deeply studied separately. The relation between self-steepening parameter、self-frequency shift parameter and peak power ratio of two separate fundamental solitons produced by decay is discussed, respectively. The results show that two-order soliton transmitting in single mode optical fiber will decay when it is effected by higher-order nonlinear effects, and the fundamental soliton with little amplitude produced by decay is in front of the one with big amplitude;Two fundamental solitons delay after the decay under the effect of self-steepening effect, the fundamental soliton with little amplitude hastens after the decay under the effect of self-steepening effect, but the one with big amplitude delays; The peak power ratio of two separate fundamental solitons produced by decay descends, and the extent of separation of two fundamental solitons at same real distance ascend when higher-order nonlinear effects is reinforced.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第4期31-35,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 教育部骨干教师基金资助项目(2000-65)
关键词 孤子 衰变 二阶 高阶非线性 振幅 峰值强度 频移 传输距离 单模光纤 参量 two-order soliton decay self-steepening self-frequency shift
  • 相关文献

参考文献5

  • 1Kadama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide[J]. IEEE Journal Quant Electr, 1987, QE-23(5):510-524. 被引量:1
  • 2Buryak A V, Kivshar Y S, Trillo S. Optical solitons supported by competing nonlinearities[J]. Optics Letters, 1995, 20(19):1 961-1 963. 被引量:1
  • 3Ohkuma K, Ichikawa Yoshi H, Abe Y. Soliton propagation along optical fibers[J]. Optics Letters, 1987, 12(7):516-518. 被引量:1
  • 4Agrawal G P. Nonlinear Fiber optics[M].New York:Academic Press Inc, 1989. 被引量:1
  • 5Zakharov V E, Shabat A B. Exact theory of two -dimensional self-focusing and one-dimensional self -modulation of waves in nonlinear media[J]. Soviet Physics JETP, 1972,34(1):62-69. 被引量:1

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部