期刊文献+

像元信息分解和决策树相结合的影像分类方法 被引量:15

An Automatic Classification Model of Remote-Sensing Image Based on Pixel Information Decomposition Combined with Decision Tree
下载PDF
导出
摘要 该文提出了一种基于像元信息分解和决策树相结合的遥感自动分类方法。选择广州市番禺区作为研究区,用像元信息分解和多变量决策树法把TM影像分为水体、植被、水泥地、土壤4种基本组分,分离成4类树枝;分别以4种基本地物组分作为分类掩膜,采用BP神经网络分类、形状指数提取、光谱特征提取等复合方法进行分枝,并开展野外遥感调查,以提高和验证分类精度。结果表明:该方法保证了分枝时地物的纯洁度,有效地避免了地物提取时多余信息的干扰和影响,提高了分类精度。结合实地调查数据与最大似然分类算法进行对比实验,表明该模型比最大似然总体分类精度高16%。 The authors propose a new automatic classification model of remote-sensing image using pixel information decomposition combined with decision tree in the study area of Panyu District,Guangzhou.At first,the Panyu TM image is divided into four elementary components that include water,vegetation,cement ground and soil by pixel information decomposition associated with multi-variable decision tree (four branches).Then,based on the elementary components,the authors continue to subdivide by BP neural network classification,shape index extraction and spectrum reflecting properties analysis.Finally,carry out field investigation to improve and validate the classification precision.The results show this method ensures the purity of branch objects and eliminates the disturbance and influence of unwanted objects effectively,so as to improve the classification precision.In comparison with the maximum likelihood classification by field survey data,the classification precision of this model heightens 16%.
出处 《地理与地理信息科学》 CSSCI CSCD 北大核心 2004年第6期35-39,共5页 Geography and Geo-Information Science
基金 广东省水利厅项目"完善广东省水土保持信息系统"
关键词 元信息 决策树 分类精度 地物 影像分类 分类算法 自动分类 像元 TM影像 遥感 pixel information decomposition decision tree classification
  • 相关文献

参考文献9

  • 1DEFRIES R, HANSEN M,TOWNSHEND J. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data [J].Remote Sensing Environment,1995,54:209-222. 被引量:2
  • 2WANG F J. Fuzzy supervised classification of remote sensing images[J]. IEEE Transactons Geosciences Remote Sensing, 1990,28(2): 194 - 201 被引量:1
  • 3ITO Y, OMATU S. Extended LVQ neural network approach to land cover mapping[J]. IEEE Transactions Geoscience and Remote Sensing, 1999,37(1) :313 - 317 被引量:1
  • 4PAOLA J D,SCHOWENGERDT R A.A detailed comparison of back- propagation neural network and maximum - like - lihood classifiers for urban land use classification[J]. IEEE Transactions Geosciences Remote Sensing, 1995,33(4): 981 - 996 被引量:2
  • 5MATSUMOTO M,TERAYAMA Y,ARAKI K. Image classification based on category proportion estimation[J]. Journal of the Remote Sensing Society of Japan, 1993,13 (3): 23 - 32. 被引量:2
  • 6MOLLER- JENSEN L. Knowledge- based classification of an urban area using texture and context information in TM [J]. Imagery,Photo. Engin. & RS, 1990,56(6): 899 - 904. 被引量:2
  • 7GRIEDL M A, BRODELEY C E. Decision tree classification of land cover from remotely sensing data[J]. Remote Sensing Environment, 1997 (61): 399 - 409. 被引量:2
  • 8FRIEDL M A, BRODLEY C E, STRAHLER A H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactions on Geosciences and Remote Sensing, 1999,37(2) :969 - 979. 被引量:2
  • 9SAFAVIAN S R, LANDGREBE D.A survey of decision tree classifier methodology [J]. IEEE Transactions System Man Cyber, 1991,21:660- 674. 被引量:2

共引文献1

同被引文献221

引证文献15

二级引证文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部