期刊文献+

Hilbert空间中函数和的次微分规则及应用 被引量:6

Subdifferential rule for sum of functions in Hilbert space and applications
原文传递
导出
摘要 给出了Hilbert空间中非光滑函数和次微分的“局部”和规则 ,讨论了这个和规则的应用 .利用“局部和规则” 。 This paper gives the subdifferential “local” sum rule for the sum of nonsmooth functions in Hilbert space and its application. With it, it gets the necessary optimality conditions for a kind of generalized and composite optimization problem.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第6期475-478,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省教育厅科研基金资助项目 (0 2ZD0 2 3)
关键词 次微分 HILBERT空间 非光滑函数 优化问题 必要条件 最优 复合 规则 应用 局部 proximal subdifferential proximal normal cone sum rule composite optimization problem necessary optimality conditions
  • 相关文献

参考文献10

  • 1CLARKE F H, LEDYAEV Y S. Nonsmooth analysis and control theory[M]. NewYork: Springer- verlag,1998. 被引量:1
  • 2BORWEIN J M, ZHU Q J. Viscosity solutions and viscosity subderivatives in smooth Bananch spaces with applications to metric regularity [ J ]. SIAM J Cont and Opti, 1996, 34:1 568-1 591. 被引量:1
  • 3ROCKAFELLAR R T. Proximal subgradients marginal values and augmented Lagrangians in nonconvex optimization[J]. Math Oper Res, 1981,6:424-436. 被引量:2
  • 4LINDENSTRAUSS J, TZAFRIRI L. Classical Bananch spaces: Functionspaces [M]. Berlin: Springer - verlag,1979. 被引量:2
  • 5STUDNIARSKI M, JEYAKUMAR V. A generalized mean- value theorem and optimality conditions in composite nonsmooth minimization[J]. Nonlinear Anal TMA, 1995, 24: 83-894. 被引量:1
  • 6BORWEIN J M, PREISS D. A smooth variational principle with application to subdifferentiability [J].Tran Amer Math Soc, 1987, 303:517-527. 被引量:2
  • 7ZHU Q J. Clarke - Ledyaev mean - value inequalities in smooth Bananch spaces [J]. Nonlinear Anal TMA,1998, 32: 315-324. 被引量:2
  • 8CLARKE F H, LEDYAEV Y S. Mean - value inequalities in Hilbert space[J]. Tran Amer Math Soc, 1994,344: 307-324. 被引量:2
  • 9JEYAKUMAR V. Composite nonsmooth programming with Gateaux differentiability [J]. SIAM J Opti,1991, 1: 30-41. 被引量:2
  • 10JEYAKUMAR V, YANG X Q. Convex composite multi- objective nonsmooth programming[J]. Math Prog Series A, 1993, 59: 325-343. 被引量:1

共引文献1

同被引文献36

  • 1杨必成.一个反向的Hardy-Hilbert积分不等式[J].吉林大学学报(理学版),2004,42(4):489-493. 被引量:32
  • 2李成林,刘志辉.模糊映射次微分在最小值点集合上的性质及其运算[J].云南民族大学学报(自然科学版),2005,14(4):296-298. 被引量:1
  • 3李成林,孔维丽,黄辉.E凸函数的次微分[J].云南大学学报(自然科学版),2006,28(5):369-373. 被引量:7
  • 4PSHENICHNYI B N. Newton's method for the solution of systems of equalities and inequalities[J]. Math Notes Acad Sci Ussr, 1970,8:827-830. 被引量:1
  • 5DANIEL J W. Newton's method for nonlinear inequalities[J]. Numer Math, 1973,40:381-387. 被引量:1
  • 6POLYAK B T. Gradient methods for solving equations and inequations[J]. UDSSR Comput Math, 1964,4: 17-32. 被引量:1
  • 7DENNIS J E, El-ALEM M , WILLIAMSON K. A trust-region approach to nonlinear systems of equalities and inequalities [J]. SIAM J Optim, 1999,9(2): 291-315. 被引量:1
  • 8CHEN C, MANGASARIAN O L. A class of smoothing functions for nonlinearand mixed complementarity problems[J]. Comput Optim Appl, 1996,5 : 97-138. 被引量:1
  • 9XIU Nai-hua, ZHANG Jian-zhong. A smoothing Gauss- Newton method for the generalized HLCP[ J]. Journal of Computational and Applied Mathematics, 2001,129: 195-208. 被引量:1
  • 10CLAKE F H. Optimization and nonsmooth analysis[ M]. New York:John Wiley and Sons, 1983. 被引量:1

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部