2[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393. 被引量:1
3[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011. 被引量:1
4[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179. 被引量:1
5[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293. 被引量:1
6[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980. 被引量:1
7[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372. 被引量:1
8[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136. 被引量:1
9[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981. 被引量:1
10[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571. 被引量:1