摘要
A Fast Multipole Method (FMM) is developed as a numerical approach to the reduction of the computational cost and requirement memory capacity for a large in solving large-scale problems. In this paper it is applied to the boundary integral equation method (BIEM) for current diffraction from arbitrary 3D bodies. The boundary integral equation is discretized by higher order elements, the FMM is applied to avoid the matrix/vector product, and the resulting algebraic equation is solved by the Generalized Conjugate Residual method (GCR). Numerical examination shows that the FMM is more efficient than the direct evaluation method in computational cost and storage of computers.
A Fast Multipole Method (FMM) is developed as a numerical approach to the reduction of the computational cost and requirement memory capacity for a large in solving large-scale problems. In this paper it is applied to the boundary integral equation method (BIEM) for current diffraction from arbitrary 3D bodies. The boundary integral equation is discretized by higher order elements, the FMM is applied to avoid the matrix/vector product, and the resulting algebraic equation is solved by the Generalized Conjugate Residual method (GCR). Numerical examination shows that the FMM is more efficient than the direct evaluation method in computational cost and storage of computers.
出处
《海洋工程:英文版》
EI
2004年第2期291-298,共8页
China Ocean Engineering
基金
ThepresentworkisfinanciallysupportedbytheNationalNaturalScienceFoundationofChina(GrantNo .50025924)andtheResearchFundfortheDoctoralProgramofHigherEducation (GrantNo .2 0 0 30 14 10 0 6 )