期刊文献+

Oxidative Stress and Free Radical Damage in Patients With Acute Dipterex Poisoning 被引量:15

Oxidative Stress and Free Radical Damage in Patients With Acute Dipterex Poisoning
下载PDF
导出
摘要 Objective To investigate whether acute dipterex poisoning (ADP) may cause oxidative stress and free radical damage in the bodies of acute dipterex poisoning patients (ADPPs), and to explore the mechanisms by which ADP may cause oxidative stress and free radical damage. Methods Fifty ADPPs and fifty healthy adult volunteers (HAVs) whose ages, gender and others were matched with the ADPPs were enrolled in a randomized controlled study, in which concentrations of nitric oxide (NO), vitamin C (VC), vitamin E (VE) and P-carotene (P-CAR) in plasma as well as concentration of lipoperoxide (LPO), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric analytical methods. Results Compared with the average values of experimental parameters in the HAVs group, the average values of plasma NO and erythrocyte LPO in the ADPPs group were significantly increased (P<0.0001), while those of plasma VC, VE and P-CAR as well as erythrocyte SOD, CAT, GPX and AChE in the ADPPs group were significantly decreased (P<0.0001). Bivariate correlation analysis and partial correlation analysis suggested that when NO and LPO values were increased, and VC, VE, β-CAR, SOD, CAT and GPX values were decreased in the ADPPs, AChE value was decreased gradually in the ADPPs (P<0.001-0.0001). Reliability analysis of experimental parameters reflecting oxidative stress and free radical damage in the ADPPs showed that the reliability coefficient (8 items) alpha=0.6909, and the standardized item alpha=0.8574. Conclusion The findings in the present study suggest that ADP can cause oxidative stress and free radical damage, and inhibit markedly erythrocyte acetylcholinesterase activity in ADPPs. Objective To investigate whether acute dipterex poisoning (ADP) may cause oxidative stress and free radical damage in the bodies of acute dipterex poisoning patients (ADPPs), and to explore the mechanisms by which ADP may cause oxidative stress and free radical damage. Methods Fifty ADPPs and fifty healthy adult volunteers (HAVs) whose ages, gender and others were matched with the ADPPs were enrolled in a randomized controlled study, in which concentrations of nitric oxide (NO), vitamin C (VC), vitamin E (VE) and P-carotene (P-CAR) in plasma as well as concentration of lipoperoxide (LPO), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric analytical methods. Results Compared with the average values of experimental parameters in the HAVs group, the average values of plasma NO and erythrocyte LPO in the ADPPs group were significantly increased (P<0.0001), while those of plasma VC, VE and P-CAR as well as erythrocyte SOD, CAT, GPX and AChE in the ADPPs group were significantly decreased (P<0.0001). Bivariate correlation analysis and partial correlation analysis suggested that when NO and LPO values were increased, and VC, VE, β-CAR, SOD, CAT and GPX values were decreased in the ADPPs, AChE value was decreased gradually in the ADPPs (P<0.001-0.0001). Reliability analysis of experimental parameters reflecting oxidative stress and free radical damage in the ADPPs showed that the reliability coefficient (8 items) alpha=0.6909, and the standardized item alpha=0.8574. Conclusion The findings in the present study suggest that ADP can cause oxidative stress and free radical damage, and inhibit markedly erythrocyte acetylcholinesterase activity in ADPPs.
出处 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2004年第2期223-233,共11页 生物医学与环境科学(英文版)
关键词 Dipterex Dipterex poisoning Oxidative stress Free radical damage Free radicals Oxidation LIPOPEROXIDATION ACETYLCHOLINESTERASE Dipterex Dipterex poisoning Oxidative stress Free radical damage Free radicals Oxidation Lipoperoxidation Acetylcholinesterase
  • 相关文献

参考文献8

二级参考文献49

共引文献96

同被引文献45

引证文献15

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部