摘要
In this text, the authors recall the main principles and data ruling cochlear implants. Then, a first circle of technical equipment for assistance is presented. This circle includes: device setting (DS), Electrically evoked Auditory Brainstem Responses (EABR), Neural Response Telemetry (NRT), Stapedial Reflex (SR) and Electrodogram Acquisition (EA). This first cycle becomes more and more important as children are implanted younger and younger; the amount of data available with this assistance makes necessary the use of models (implicit or explicit) to handle this information. Consequently, this field is more open than ever.1 Introduction1 1.1 About Hearing Mechanisms The hearing function in human beings is something very specific and difficult to understand because it uses the brain highest functions. Basically, we can say (figure 1) that several stages are involved [1]: It is not easy to give a unique interpretation to each one of these stages, as most of the involved processes overlap at all levels. Nevertheless, as a brief summary, let us assume that [2]: l The ear transmits the air vibrations and transforms them into electric stimuli compatible with nerve excitation, l Auditory pathways carry the electric pulses; exchanges take place, through decussation and information goes up using left and right channels. Also, specific features in the signal are detected and encoded before reaching the brain (phonetic features), l Brain interpretation matches input cues with the previously stored data into the memory and make association at different levels of language. In this text, we will come back on some ear features, mostly on the transformation of acoustical vibrations into electrical information transmitted to the brain. We will focus on the technical circle, but people fitted with a cochlear implant (CI) must be seen at all levels of language [3] and a typical team is composed of: l a E.N.T. (Ear Nose Throat) practitioner, l the surgeon performing the implantation, l a psychologist (a strong will and a good surro
In this text, the authors recall the main principles and data ruling cochlear implants. Then, a first circle of technical equipment for assistance is presented. This circle includes: device setting (DS), Electrically evoked Auditory Brainstem Responses (EABR), Neural Response Telemetry (NRT), Stapedial Reflex (SR) and Electrodogram Acquisition (EA). This first cycle becomes more and more important as children are implanted younger and younger; the amount of data available with this assistance makes necessary the use of models (implicit or explicit) to handle this information. Consequently, this field is more open than ever.1 Introduction1 1.1 About Hearing Mechanisms The hearing function in human beings is something very specific and difficult to understand because it uses the brain highest functions. Basically, we can say (figure 1) that several stages are involved [1]: It is not easy to give a unique interpretation to each one of these stages, as most of the involved processes overlap at all levels. Nevertheless, as a brief summary, let us assume that [2]: l The ear transmits the air vibrations and transforms them into electric stimuli compatible with nerve excitation, l Auditory pathways carry the electric pulses; exchanges take place, through decussation and information goes up using left and right channels. Also, specific features in the signal are detected and encoded before reaching the brain (phonetic features), l Brain interpretation matches input cues with the previously stored data into the memory and make association at different levels of language. In this text, we will come back on some ear features, mostly on the transformation of acoustical vibrations into electrical information transmitted to the brain. We will focus on the technical circle, but people fitted with a cochlear implant (CI) must be seen at all levels of language [3] and a typical team is composed of: l a E.N.T. (Ear Nose Throat) practitioner, l the surgeon performing the implantation, l a psychologist (a strong will and a good surr
出处
《系统仿真学报》
CAS
CSCD
2002年第1期55-59,83,共6页
Journal of System Simulation
关键词
耳蜗植入片
神经科学
感觉系统
神经响应
镫骨反射
电力探测
cochlear implants
device setting
electrically evoked auditory brainstem responses
neural response telemetry
stapedial reflex
electrodogram acquisition