期刊文献+

材料非线性问题的广义逆力法有限元格式表达 被引量:2

FINITE ELEMENT FORMULATION OF GENERALIZED INVERSE MATRIX FORCE METHOD FOR MATERIAL NONLINEARITY PROBLEMS
下载PDF
导出
摘要 广义逆(generalized inverse matrix,GIM)力法是一种从经典力法的求解思路中引发而出的基于力法和广义逆矩阵理论的一种新的迭代解法,对于求解材料非线性问题具有其独特的特点和优势。由于该法在解决材料非线性问题时无需像传统的基于位移法的逐步增量法那样逐步求解,故又称特大增量步算法(large increment method,LIM)。算法的整个求解过程可以分为整体阶段和局部阶段。材料非线性问题的广义逆力法具有完整的用有限元格式表达的通用求解过程和公式,尤其是算法局部阶段的一致弹塑性柔度和刚度矩阵的表达式。算例为平面应力问题算例。此外,广义逆力法在结构并行计算方面具有不同于传统的子结构并行计算的新特点。该算法的意义主要集中在两点:一是结构计算不再只是采用位移元和杂交元,而是采用了更适应计算机计算的力法方法;二是结构并行计算不再是传统的子结构并行计算,而是新形式的并行计算。 The finite element formulation of generalized inverse matrix force method, or so-called large increment method (LIM) for material nonlinearity problems is proposed. LIM is a new iteration method, which is based on theories of the force method and generalized inverse matrix (GIM), and is of unique characteristics and advantages especially for material nonlinearity problems. Unlike the conventional incremental method based on the displacement method, which can not avoid time consumption and error accumulation, the proposed new method can work with very large increment up to several loading cycles as based on the force method. Unlike the classical force method, LIM does not need to find some basic structure any more. Consequently, this method sheds a new light to the force method in the computational mechanics. In addition, LIM is of intrinsic parallel-calculating characteristics, which are different from the traditional sub-structural algorithm based on displacement method. The algorithm can be divided into the global stage and the local stage. The finite element formulation with consideration of material nonlinearity is given. It includes the expression of consistent elastoplastic flexibility and stiffness matrix. An example of plane stress problem is also given to show the generality of this new method.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第21期3629-3635,共7页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展规划(973)项目(2002CB412709)资助课题。
关键词 广义逆矩阵 平面应力问题 求解 迭代解法 并行计算 算法 表达式 力法 材料非线性 子结构 Finite element method Matrix algebra Nonlinear equations
  • 相关文献

参考文献5

  • 1Zhang C J,Liu X L. A large increment method for material nonlinearity problems[J]. Advances in Structural Engineering,1997,1(2):99-110 被引量:1
  • 2Fenner R T. Finite Element Method for Engineers[M]. London:MacMillan,1978 被引量:1
  • 3Sotelino E D. Parallel processing techniques in structural engineering applications[J]. Journal of Structural Engineering ASCE,2003,129(12):1 698-1 706 被引量:1
  • 4Giambanco F,Palizzolo L,Panzeca T. The indirect force method[J]. Comp. Struct.,1990,37(5):759-768 被引量:1
  • 5Kaneko I,Lawo M,Thierauf G. On computational procedures for the force method[J]. J. Numer. Meth. Engng.,1982,18(10):1 469-1 495 被引量:1

同被引文献22

  • 1王开健,刘西拉,顾雷.基于MPI机群环境下的广义逆力法并行化初探[J].岩石力学与工程学报,2005,24(1):57-65. 被引量:3
  • 2王心勇,辛全才,宋娟.钢筋混凝土结构的非线性有限元分析[J].人民黄河,2006,28(8):60-61. 被引量:6
  • 3张剑,叶见曙,陈艳,钱培舒.基于分层壳元法多梁式T梁的极限承载力评估[J].公路交通科技,2007,24(5):81-85. 被引量:6
  • 4何政,欧进萍,钢筋混凝土结构非线性分析[M].哈尔滨:哈尔滨工业大学出版社.2006. 被引量:15
  • 5刘西拉,张春俊.基于广义逆矩阵的特大增量步算法[C]//第三届全国结构工程学术会议论文集.山西:中国力学学会,1994:21-35. 被引量:1
  • 6郭早阳,特大增量步方法和并行程序设计[D].北京:清华大学土木工程系,1999. 被引量:1
  • 7Barham W S, Aref A J, Dargush G F. On the elasto- plastic cyclic analysis of plane beam structures using a flexibility-based finite element approach[J]. Interna- tional Journal of Solids and Structures, 2008, 45 (22- 23) :5688-5704. 被引量:1
  • 8Barham W S, Aref A J, Dargush G F. Development of the large increment method for elastic perfectly plastic analysis of plane frame structures under mono- tonic loading[J]. International Journal of Solids and Structures, 2005, 42(26) : 6586-6609. 被引量:1
  • 9LONG Dan-bing, GUO Zao-yang, LIU Xi-la, et al. An element nodal force-based large increment method for elastoplasticity[C]//Proceedings of ISCM Ⅱ and EPMESC XII. Hong Kong-Macao (China) : AIP, 2009:1401-1405. 被引量:1
  • 10Zienkiewicz O C, Taylor R L, Too J M. Reduced in- tegration technique in general analysis of plates and shells[J]. International Journal for Numerical Meth- ods in Engineering, 1971, 3(2):275-290. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部