期刊文献+

具两个时滞项的微分方程的稳定性 被引量:4

STABILITY OF DIFFERENTIAL EQUATIONS WITH TWO DELAYS
原文传递
导出
摘要 本文考虑了一类具两个时滞项的微分方程的稳定性,其中一个时滞项的系数非负,另一个时滞项的系数非正.当非负系数恒为零时,本文所得结论改进了Yorke等提出的3/2稳定性定理的相应结论,当非负系数项的时滞为零,本文不同于已有文献用Liapunov函数或泛函法将时滞项作为干扰处理,而是反过来利用时滞项让方程稳定. The stability of differential equations with two delays is considered in this paper. The coefficient of one delay term is nonnegative, that of the other is nonpositive. When nonnegative coefficient identically vanishing, the 3/2 stability theorem, which Yorke and the other researchers presented, was improved and generalized. When delay of nonnegative coefficient term identically vanishing, our results have shown that the delay term can make the unstable equations stable. This is different from the Lyapunov function or Lyapunov functional way which regard the delay term as disturber.
出处 《应用数学学报》 CSCD 北大核心 2004年第3期489-499,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(60274007号) 湖北省教育厅优秀青年项目(20038001号) "面向21世纪教育振兴行动计划"资助项目.
关键词 时滞微分方程 LIAPUNOV函数 Yorke条件 稳定性 单调 Equation with delay, the 3/2 stability, Yorke condition, monotone
  • 相关文献

参考文献7

  • 1Yorke J A. Asymptotic Stability for One Dimensiond Differential-delay Equations. J. Differential Equations, 1970, 7:189-202 被引量:1
  • 2Hara T, Yoneyama T, Miyazaki R. Some Refinements of Razumikhin's Method and their Applications.Funkcial Ekvac., 1992, 35:279-305 被引量:1
  • 3Yoneyama T. On the Stability for the Delay-differential Equation x(t) = =-a(t)f(x(t - r(t))). J.Math. Anal. Appl., 1986, 120:271-275 被引量:1
  • 4Yoneyama T. On the 3/2 Stability Theorem for One-dimensional Delay-differential Equations. J.Math. Anal. Appl., 1987, 125:161-173 被引量:1
  • 5Yoneyama T. The 3/2 Stability Theorem for One-dimensional Delay-differential Equations with Unbounded Delay. J. Math. Anal. Appl., 1992, 165:133-143 被引量:1
  • 6Muroya Y. On Yoneyama's 3/2 Stability Theorems for One-dimensional Delay Differential Equations.J. Math. Anal. Appl., 2000, 247:314-322 被引量:1
  • 7廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2002,第一版(Liao Xiaoxin. Theory and Application of Stability for Dynamical Systems. Beijing: National Defence Industry Publishing Company, 2002) 被引量:1

同被引文献16

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部