期刊文献+

具有局部和非局部反应项的抛物方程解的爆破性质

Blast Properties of Parabolic Equation Solution with Local and Non-local Reaction Terms
下载PDF
导出
摘要 讨论了方程ut=Δuf(u)f(u(x0,t))解的爆破性质,得出了在一定条件下解在有限时刻爆破,并讨论了其渐近性态,最后把部分结果推广到方程ut=Δu+f(u)∫Ωf(u) Blast properties of the solution to the equation ut=Δu+f(u)f(u(x0,t)) as well as its asymptotic condition are discussed.It is acquired that solution blasts at limited time under some definite conditions.At last,the partial results are popularized to the equation ut=Δu+f(u)∫Ωf(u)dx.
作者 李梅
出处 《南京农专学报》 2003年第2期8-11,共4页 Journal of Nanjing Agricultural Technology College
关键词 抛物方程 局部反应项 爆破性质 渐近性态 局部存在性 parabolic equation local reaction term blast asymptotic condition
  • 相关文献

参考文献4

  • 1[1]K. Bimpong-Boca, P. Ortoleva, and J. Ross. Far-from-equilibrium phenomena at local sites of reaction [J].J. Chem. phys. 60(1974) ,3 124. 被引量:1
  • 2[2]J.R. Camnon and H. M. Yin. On a class of nonlinear nonclassical paralolic problems[J]. J. Differential Equations 79( 1989), 266- 288. 被引量:1
  • 3[3]John M. Chadam, A. Peirce, and Hong-Ming Yin. The blow-up prperty of solutions to some diffusion equations with localized nonlinear reactions[J]. J. Mathematical Analysis and Applications 169(1992) ,313 - 328. 被引量:1
  • 4[4]Pao, C.V.Nonlinear parabolic and elliptic equations[M]. New York and London:Plenum press, 1992. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部