摘要
讨论了一个燃烧反应扩散方程的奇摄动Dirichlet问题 .首先 ,构造了代数型角层形式的解 ,分别得到了左边界层、右边界层和内层性质的校正项 .然后 ,构造了上、下解 ,并对相应的关系式的非线性项进行了泰勒展开 ,再用中值定理得到了有关不等式 .最后 ,利用微分不等式理论 ,证明了问题解的存在性 ,并得到了解的渐近估计 .
We consider a singularly perturbed combustion reaction diffusion Dirichlet problem. First, we construct the solution of algebraic angular layer form and obtain the corrective terms of left boundary layer and right boundary layer and interior layer respectively. Then, we construct the upper and lower solutions and expand the nonlinear term of the corresponding expression and obtain the relative inequalities by using the mean value theorem. Finally, by using the theory of differential inequalities, we prove the existence of solution for the problem and obtain the asymptotic estimation.
出处
《湖州师范学院学报》
2003年第6期16-18,共3页
Journal of Huzhou University
基金
浙江省自然科学基金资助项目 (10 2 0 0 9)
浙江省教育厅资助项目 (2 0 0 2 0 30 5 )
湖州师范学院重点科研资助项目(0 2 10 1A)
关键词
奇摄动
反应扩散
微分不等式
singular perturbation
reaction diffusion
differential inequalities