期刊文献+

数控加工复杂槽腔刀具路径的补偿算法 被引量:2

Compensation Algorithm for NC Machining Tool Path for Complex Pocket
下载PDF
导出
摘要 本文展示了一种新颖的算法用以处理由直线、弧、自由曲线组成的凸或凹形的复杂槽腔的切削路径。首先用四点细分插值法对边界的数据加密,然后进行快速补偿。作者提出一种复式排序搜索方法计算补偿曲线的交点,最后判断剔除多余的自交环,得到数控加工刀具的切削路径。文章给出了一些复杂边界补偿结果的例子以示算法的效果。 It presents a new computation model for compensation complex pockets with conves and/or concave composed of straight line, arc and free curve. In the process a concise interpolatory scheme called 4-point interpolatory subdivition scheme is applied to densify control pointers. Then a quick compensation procedure is executed and a new method is developed for searching and calculating intersactory points caused by previous procedure. Finally, the seperation procedure is used and the false pieces are abandoned exactly.Some example is demostrated for the improvement of compensation complexity boundry.
出处 《江苏工学院学报》 1993年第2期43-49,共7页
关键词 数控切削 槽腔 刀具 补偿算法 computer aided manufacturing numerical control cutting curve fitting
  • 相关文献

同被引文献10

  • 1朱志红,甘锡英,林奕鸿.刀具半径补偿算法研究[J].华中理工大学学报,1993,21(2):99-104. 被引量:14
  • 2裴葆青,刘幼立.AutoCAD样条曲线的生成原理及误差分析[J].华北工学院学报,1995,16(2):128-132. 被引量:5
  • 3Held M, Lukacs G, Andor L. Pocket machining based on contour parallel tool paths generated by means of proximity maps [J]. Computer Aided Design, 1994, 26(3): 189~203. 被引量:1
  • 4Persson H. NC machining of arbitrary shaped pockets [J]. Computer Aided Design, 1978, 10(3): 169~174. 被引量:1
  • 5Kalmanovich G, Nisnevich G. Swift and stable polygon growth and broken line offset [J]. Computer Aided Design, 1998, 30(11): 847~852. 被引量:1
  • 6Rohmfeld R F. IGB-offset for plane curve-loop removal by scanning of interval sequences [J]. Computer Aided Geometric Design, 1998, 15: 339~375. 被引量:1
  • 7Wayne Tiller, Eric G Hanson. Offsets of two-dimensional profiles [J]. IEEE Computer Graphics & Application, 1984, 4(9): 36~46. 被引量:1
  • 8Lee Y S, Koc B. Ellipse offset approach to multi-axis roughing and finishing of ruled surface pockets [J]. Computer-Aided Design, 1998, 30(12): 957~971. 被引量:1
  • 9Bentley J L, Ottmann T A. Algorithms for reporting and counting geometric intersections [J]. IEEE Transactions on Computers, 1979, 28: 643~647. 被引量:1
  • 10Sang C Park, Hayong Shin. Polygonal chain intersection [J]. Computers & Graphics, 2002, 26: 341~350. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部