摘要
本文用非等距有限差分法,求解了准线性微分方程组,获得了在电子平行速度区间,逃逸电子分布函数和波能密度的二维演化图象。这一结果比文[1]和[2]在稳态情形下所得到的解析结果以及文[1]在一维情形下演化的解析结果,较完整地反映了逃逸电子分布函数的特征。可供对逃逸电子的进一步研究参考。
The quasilinear differential equations are solved by finite difference method with non-equidistant scheme. The evolution of the runaway electron distribution function and wave energy density are obtained in interval of electron parallel velocity. These solutions are shown to be more complete than that given in [1] and [2] for both the stationary case and the evolution of functions in one-dimension. The results are useful for further study of runaways.
出处
《计算物理》
CSCD
北大核心
1993年第4期396-404,共9页
Chinese Journal of Computational Physics
关键词
差分法
逃逸电子
波能密度
finite difference method, runaway electron, wave energy density.