期刊文献+

医用微型机器人的姿态可控性研究 被引量:1

Study on Pose Controllability of New Kind of Medical Micro Robot
下载PDF
导出
摘要 建立了新型医用微型机器人的系统动力学模型,利用有向图理论分析了医用微型机器人的姿态可控性,得到微型机器人的姿态可控的结论.同时,对机器人和环境参数的摄动对机器人的姿态的影响进行了研究,实验研究结果证明了上述理论.姿态可控性与微型机器人进入人体时人体的舒适性和安全性紧密相关.通过控制微型机器人的运行姿态,可以使人体得到良好的舒适程度. The dynamics models of the novel kind of medical micro robot for entering human body are studied. The pose controllability is analyzed with the directed graph method. Results show that the micro robot can be controlled completely when it runs in the human bodies. Affections of little changes of robot or running environment parameters to the pose controllability are studied with experiments. Relations between pose controllability and human comfort when the micro robot running into the human body are also discussed.
出处 《自动化学报》 EI CSCD 北大核心 2004年第5期707-715,共9页 Acta Automatica Sinica
基金 国家自然科学基金(59805017) 国家"863"项目(863-512-9805-08)资助~~
关键词 医用微型机器人 姿态 可控性 Biomedical engineering Calculations Controllability Dynamics Mathematical models Matrix algebra Robot applications
  • 相关文献

参考文献1

二级参考文献4

共引文献27

同被引文献17

  • 1程良伦.微管道机器人及其智能控制系统的研究[D].长春:.中国科学院长春光学精密机械研究所,1999. 被引量:2
  • 2解旭辉,李圣怡,徐从启,等.蠕动式微小管道机器人:中国,ZL200710035846.9[P].2007-09-30. 被引量:1
  • 3SONG P,KRAUS P,KUMAR V,et al.Analysis of rigid-body dynamic models for simulation of systems with frictional contacts[J].Journal of Applied Mechanics,2001,68:118-128. 被引量:1
  • 4SONG P.Modeling,analysis and simulation of multibody systems with contact and friction[D].Philadelphia:University of Pennsylvania,2002. 被引量:1
  • 5STEWART D.Rigid-body dynamics with friction and impact[J].SIAM Review,2000,42(1):3-29. 被引量:1
  • 6MASON M T,WANG Y.On the inconsistency of rigid-body frictional planar mechanics[C]// Proc.IEEE International Conf.on Robotics & Automation,April 24-29,1988,Pittsburgh,PA.USA:IEEE,1988:524-528. 被引量:1
  • 7LOTSTEDT P.Coulomb friction in two-dimensional rigid body systems[J].ZAMM,1981,61(12):605-615. 被引量:1
  • 8TRINKLE J,PANG J S,SUDARSKY S,et al.On dynamic multi-rigid-body contact problems with coulomb friction[J].ZAMM,1995,77(4):267-280. 被引量:1
  • 9COTTLE R,PANG J,STONE R.The linear complementarity problem[M].Boston,MA:AcademicPress,1992. 被引量:1
  • 10KHAIL H K.Nonlinear systems[M].New York:MacMillan,2002. 被引量:1

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部