摘要
针对一类可分解混沌动力系统的完全同步问题,提出一个构造混沌同步系统的新方法.以线性系统的稳定准则为基础,通过对系统做适当的分离,使系统的雅可比矩阵的所有特征值全为负实数时,便可实现新系统和原系统的完全同步.与传统的混沌同步方法相比较,提出的方法由于不需要计算李雅普诺夫指数,因而显得更加简单、有效,并以ArneDehliHalvorsen循环对称系统和Moore Spiegel系统为例加以说明.通过数值模拟证实了所提出的方法的可行性和有效性.
The problem of the complete synchronization for a kind of dynamically decomposable system is discussed. A new method for constructing chaotically synchronized systems is proposed. This approach is based on the stability criterion of linear system. Chaos synchronization is achieved by means of appropriate separation of chaos system when all eigenvalues of Jacobian matrix of the system have negative real parts. Compared with the conventional synchronization approaches, the proposed method is much simpler and effective than the conventional approaches because the Lyapunov exponents are not required to calculate. Arne Dehli Halvorsen's cyclically symmetric system and the Moore-Spiegel oscillator are treated as examples. Two illustrative examples along with computer simulation results are finally included to visua-lize the effectiveness and feasibility of the developed methods.
出处
《江苏大学学报(自然科学版)》
EI
CAS
2004年第6期517-520,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(10071033)
关键词
可分解动力系统
混沌同步
稳定准则
dynamically decomposable system
chaos synchronization
stability criterion