摘要
用置换群和抽象群的理论研究PSU(3,q2)的某些子群结构,并应用到射影平面上.得到主要结果:令q是素数方幂,若G是一个射影平面的共线变换群并且传递地作用在点集合上,则G不能与PSU(3,q2)同构.
Based on the theory of permutation groups and abstract groups, some subgroups of PSU(3,q^2) are investigated. These results are then applied to the research on projective planes. The main result: Let q be a power of a prime, and if G is a collineation group of a projective plane and G acts transitively on the points, then G is not isomorphic to PSU(3,q^2).
出处
《浙江大学学报(理学版)》
CAS
CSCD
2004年第6期601-604,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(10171089).
关键词
线性空间
射影平面
点传递
linear spaces
projective planes
point-transitive