期刊文献+

径向基函数神经网络在启动压力梯度预测中的应用

Application of Radial Basic Function Neural Network on the Prediction of Starting Pressure Gradient
下载PDF
导出
摘要 启动压力梯度直接影响着低渗透油田的开采量以及油藏压力的预测精度,它与流体粘度、密度、渗透率、孔隙度等影响因素呈非线性关系。而人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。利用径向基函数(RBF)人工神经网络对启动压力梯度进行预测,并结合岩心的启动压力梯度的实际测定结果进行研究,结果表明:RBF人工神经网络是一种较为有效的预测方法,具有较高的精度,该方法可以为低渗油田的开发提供可靠的基础数据,节省了人力、物力。 Starting pressure gradient directly affects the recovery rate of low permeable oilfield and the prediction accuracy of reservoir pressure, it bears nonlinear relation to some factors like fluid viscosity, density, permeability and porosity . While the artificial neural network has the ability to indicate the random nonlinear relation and the ability for study, it has become a new idea and a new method to solve the complex nonlinear, indefinite and time - varying problems . By adopting radial basic function(RBF) neural network to predict the starting pressure gradient, and by combining the real measured results of the starting pressure gradient, the study results show that RBF artificial neural network is a kind of effective prediction method with high accuracy, this method can provide the reliable basic data for the development of low permeable oilfield, saving a great deal of labor power and costs.
出处 《特种油气藏》 CAS CSCD 2004年第5期63-65,共3页 Special Oil & Gas Reservoirs
关键词 径向基函数神经网络 启动压力梯度 人工神经网络 预测 低渗透油藏 radial basic function neural network starting pressure gradient artificial neural network prediction low permeable reservoir
  • 相关文献

参考文献7

  • 1闻新等编著..MATLAB神经网络应用设计[M].北京:科学出版社,2000:333.
  • 2焦李成著..神经网络系统理论[M].西安:西安电子科技大学出版社,1990:284.
  • 3孔祥言编著..高等渗流力学[M].合肥:中国科学技术大学出版社,1999:503.
  • 4王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:178
  • 5姚约东,葛家理.低渗透油层非达西渗流规律的研究[J].新疆石油地质,2000,21(3):213-215. 被引量:34
  • 6ChenT,ChenH.Approximation capability to functions of several variables,nonlinear functions and operator by radial basis function neural network [J].IEEE Trans on neural networks,1995,16(6). 被引量:1
  • 7许东,吴铮编著..基于MATLAB 6.x的系统分析与设计 神经网络[M].西安:西安电子科技大学出版社,1998:239.

二级参考文献9

共引文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部