期刊文献+

基于规划规则的激励学习偏差研究 被引量:1

Study of Bias of Reinforcement Learning Based on Plan Rule
原文传递
导出
摘要 在实际动态系统中,经典无启发知识的激励学习算法收敛非常慢,因此必须采用某种偏差技术加速激励学习的收敛速度.已有激励学习偏差算法,通常先验地给出启发知识,这与激励学习的思想相矛盾.通过在初次激励学习获得的策略知识中,先抽取满足条件的规划知识,然后将规划知识作为启发知识,进一步指导后继激励学习.实验结果显示这种学习技术能有效加快算法收敛速度,并适用于动态复杂环境. The classical reinforcement learning which has no prior knowledge learn very slowly in practice. So adapt some kinds of bias technology to speed the convergence of reinforcement learning. The plan rule satisfied conditions is extracted by means of reinforcement learning's policy. Then using this plan rule as the prior knowledge of the bias, direct the latter reinforcement learning further. The experiment proves the validity and the convergence of this method.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期681-684,共4页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(60103012) 国家重点研究发展规划973资助项目(2002CB312002) 江苏省创新人才资助项目(BK2003409)
关键词 激励学习 算法 显示 收敛速度 规则 动态系统 抽取 知识 学习技术 实际 reinforcement learning bias plan rule extract
  • 相关文献

参考文献5

  • 1Stone P,Veloso M. Team-Partitioned, Opaque-Transition reinforcement learning[A].In: Etizioni O, Muller J P,Bradshaw J M, eds. Proceedings of the Third International Conference on Autonomous Agents[C]. Seattle: ACM Pre, 1999. 206-212. 被引量:1
  • 2Sun R,Sessions C.Extracting plans from reinforcement learners[A].In: Xu L, Chan L, King I,et al,eds. Proceedings of the 1998 International Symposium on Intelligent Data Engineering and Learning[C].New York: Springer-Verlag,1998. 243-248. 被引量:1
  • 3Kushmerick N,Hanks S, Weld D S,et al. An algorithm for probabilistic planning[J].Artificial Intelligence,1995,76,(1-2):239-286. 被引量:1
  • 4Dearden R ,Boutilier C. Abstraction and approximate decision theoretic planning[J].Artificial Intelligence,1997,89: 219-283. 被引量:1
  • 5Sun R, Merrill E, Peterson T. From implicit skills to explicit knowledge:A bottom-up model of skill learning[J].Cognitive Science,2001, 25 (2): 203-244. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部