摘要
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.
基金
This work was supported by the RGC Competitive Earmarked Research Grant (No. PolyU 5065/98E)
Natural Science Foundation of China (No. 60225015)
Natural Science Foundation of Jiangsu Province (No. BK2003017)
National Key Labruary of Novel Software Tech