摘要
对于概率空间(Ω,,P)上的n(n>2)个随机向量ξ_1,ξ_2,…ξ_n,给出了其不相互独立,但其中任意r(2≤r≤n-1)个相互独立的充要条件。此外,还对ξ_i,i=1,2,…,n为正态随机向量,给出了其中任意r(2≤r≤n-1)个的线性组合均为正态随机向量,但a_1ξ_1+a_2ξ_2+…+a_nξ_n(a_i为非零实数,i=1,2,…,n)不是正态随机向量的一个充要条件。
Suppose that ξ_,ξ_2.…,ξ_n are n random vectors defined on the same probability space (Ω,(?),P). This paper gives the necessary and sufficient condition for that arbitrary r random vectors of ξ_1,ξ_2, …,ξ_n is independent, but ξ_1,ξ_2,…,ξ_n is dependent. In addition, in case ξ_1,ξ_2,…,ξ_n are normal random vectors, we give the necessary and sufficient condition for that a_1ξ_1 + a_2ξ_2+…+a_nξ_n (where a_1,a_2,…,a_n are all no zero) is not normal random vector, but linear combination of arbitrary r random vectors of ξ_1 ,ξ_2,…,ξ_n is all normal random vectors.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
1993年第4期437-440,共4页
Journal of Central China Normal University:Natural Sciences
关键词
随机向量
独立性
概率空间
random vectors
independency
linear combination
normal distribution