摘要
点插值方法是一种新型的无网格方法.在该方法中,插值函数具有Delta函数性质,可以方便地施加边界条件.本文采用局部Petrov Garlerkin离散方法得到控制方程.这种方法只包含中心在所考虑点处的规则局部区域上以及局部边界上的积分,无须任何背景网格或单元,是一种真正的无网格方法.计算结果表明:该方法简便有效,在工程中具有十分广阔的应用前景.
A point interpolation method (PIM) developed in recent years is one of the new kind of mesh-less method. In the PIM, the interpolation function has the Delta function property, so the essential boundary conditions can be simply imposed. In this paper, the local Petrov-Garlerkin method is used to obtain governing equation of PIM. It involves only integration over a regular local sub-domain in or on a local sub-boundary centered at the nodes in question. So, it is a truly mesh-less method, because the background cells for the integration are not needed. The numerical results show this method is simple and effective.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2004年第4期271-276,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
宁夏大学数学计算机学院青年教师科研启动基金(0303).