期刊文献+

基于神经网络的联合混沌时间序列的预测研究(英文) 被引量:4

Study of Predicting Combined Chaotic Time Series Using Neural Networks~
原文传递
导出
摘要 提出了利用前馈神经网络预测联合混沌序列,通过引用著名的Henon和Lozi混沌系统作为仿真实验产生联合混沌信号序列。预测结果证明,用改进的BP算法训练的NN可以完全预测联合混沌信号序列。 The combined chaotic time series is predicted by using the standard feed-forward neural networks (NN). Henon and Lozi systems are used to generate the combined chaotic time series. From the forecasting results, it can be concluded that the NN, which is trained by improved back-propagation (BP) algorithms, can be well applicable for combined chaotic time series prediction.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2004年第10期1225-1228,1233,共5页 Journal of Optoelectronics·Laser
基金 SupportedbyNationalNaturalScienceFoundationofChina(60 1 740 2 1 ) KeyProjectofTianjinNaturalScienceFoundation(0 1 380 0 71 1 )
关键词 联合 预测 混沌序列 训练 改进 引用 利用 前馈神经网络 BP算法 混沌时间序列 Backpropagation Chaos theory Computer simulation Feedforward neural networks Mathematical models
  • 相关文献

参考文献9

  • 1Hotnik K, Stinchcombe M, White H. Multilayer feed-for-ward networks are universal approximators[J].Neural Networks,1989,2(5):359-366. 被引量:1
  • 2Medeiros M C,Veiga A.A hybrid linear-neural model for time series forecasting[J].Neural Networks,IEEE Transactions on,2000,11(6):1402-1412. 被引量:1
  • 3Atiya A F,El-Shoura S M,Shaheen S I,et al.A comparison between neural-network forecasting techniques-case study:river flow forecasting[J].Neural Networks,IEEE Transactions on,1999,10(2):402-409. 被引量:1
  • 4Shin C K,Yun U T,Kim H K.et al.A hybrid approach of neural network and memory-based learning to data mining[J].Neural Networks,IEEE Transactions on,2000,11(3):637-646. 被引量:1
  • 5de Oliveira K A,Vannucci A,da Silva E C.Using artificial neural networks to forecast chaotic time series[J].Physica A:Statistical Mechanics and its Applications,2000,284(1-4):393-404. 被引量:1
  • 6Navone H D,Ceccatto H A.Learning chaotic dynaqmics by neural networks[J].Chaos,Solitons & Fractals,1995,6 (Supplement 1):383-387. 被引量:1
  • 7Aussem A.Dynamical recurrent neural networks towards prediction and modeling of dynamical systems[J].Neurocomputing,1999,28(1-3):207-232. 被引量:1
  • 8Xu M,Ch Guanrong,Tian Y T.Identifying chaotic systems using Wiener and Hammerstein cascade models[J].Mathematical and Computer Modelling,2001,33,(4-5):483-493. 被引量:1
  • 9Aziz-Alaoui M A,Robert C,Grebogi C.Dynamics of a Henon-Lozi-type map[J].Chaos,Solitons & Fractals,2001,12(12):2323-2341. 被引量:1

同被引文献50

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部