期刊文献+

临界增长条件下一类半线性椭圆方程解的存在性

Existence of Solutions for a Class of Semilinear Elliptic Equations in the critical growth Case
下载PDF
导出
摘要 用变分方法研究了半线性椭圆方程Dirichlet边值问题-Δμ=f(x,μ)+h(x)对几乎所有的x∈Ω,μ=0在Ω上解的存在性,在临界增长情况下得到了所解的一个存在性定理. The existence are studied for solutions of the Dirichlet boundary Valve problem for semilinear elliptic equations. -Δμ=f(x,μ)+h(x) for a.e. x∈Ω,μ=0 on Ω by the Variational methods.An existence theorem is obtained for problem in the critical growth case.
作者 刘水强
出处 《数学理论与应用》 2004年第3期13-17,共5页 Mathematical Theory and Applications
基金 湖南省2003年省级科技计划资助项目(03JZY3037)
关键词 解的存在性 临界增长 半线性椭圆方程 存在性定理 上解 变分方法 条件 情况 Semilinear elliptic equation the variational methods critical growth
  • 相关文献

参考文献3

二级参考文献11

  • 1Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655. 被引量:1
  • 2Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430. 被引量:1
  • 3Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68. 被引量:1
  • 4Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360. 被引量:1
  • 5Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000. 被引量:1
  • 6Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33 被引量:1
  • 7Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212. 被引量:1
  • 8Ciarlet P G. The Finite Element Methods for Elliptic Problems[M]. Amsterdam; North-Holland, 1978. 被引量:1
  • 9李荣华.两点边值问题的广义差分方法[J].吉林大学自然科学学报,1982,1:26-40. 被引量:4
  • 10WANG Tong-ke (School of Mathematics and Information Science, Henan Normal University,Xinxiang, 453002,China).High Accuracy Finite Volume Element Method for Second Order Elliptic Partial Differential Equation[J].河南师范大学学报(自然科学版),2003,31(1):122-122. 被引量:2

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部