期刊文献+

粘性流体换热问题用直角坐标网格的贴体解法 被引量:2

Body fitted method with cartesian coordinates for solving viscous fluid flow and heat transfer problems
下载PDF
导出
摘要 采用直角坐标网格但通过在边界附近保留不规则控制体的非结构化直角坐标网格方法求解粘性不可压流体流动和换热问题 .在边界附近切割单元的求解采用常规的方法处理 ,而不采用插值方法处理 ,并在同位网格上对控制方程组进行离散 .因而该算法是贴体的 ,并可适用于解决复杂边界流动换热问题 .通过对同轴环行空间和二维倾斜空腔内的对流换热问题的计算对该数值方法在传热问题中的应用进行验证 .对比结果表明 ,计算结果与精确解和STAR CD的结果在一定Re数和网格数时是很接近的 ,可以满足一定的精度要求 。 A body fitted unstructured numerical method which takes advantage of Cartesian coordinates and reserves irregular control volumes near boundaries was studied for solving incompressible viscous fluid flow and heat transfer problems. The conservation equations were solved in the cells that are intersected by the wall according to the traditional methods without interpolation and are discretized using collocated grids with all discrete dependent variables located at common nodes throughout domain. This scheme is of body fitting which is well suited to simulate fluid flow and heat transfer problems on general complex boundaries. To test the accuracy of this approach, it was applied to two benchmark cases: flow between two coaxial cylinders' surfaces; flow in a 2-D inclined driven cavity. Agreement was found with analytical, numerical benchmark and STAR-CD results. All these show that this method is validated for viscous fluid flow and heat transfer problems.
作者 康宁 汪建兵
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第9期876-881,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目 ( 5 99760 0 5 ) 凡舟科研基金资助项目 ( 2 0 0 2 13 16)
关键词 非结构化网格 直角坐标网格 复杂区域 对流换热 Heat transfer Incompressible flow Interpolation Numerical methods Two dimensional
  • 相关文献

参考文献11

  • 1[2]Patankar S V.Numerical heat transfer and fluid flow[M].New York:Hemisphere Publishing Corporation, 1980 被引量:1
  • 2[3]Frymier P D, Hassan H A, Salas M D.Navier-Stokes calculations using cartesian grids:I.laminar flows[J].AIAA Journal, 1988, 26(10):1181~1188 被引量:1
  • 3[4]Wu Ziniu.Anisotropic cartesian grid method for viscous flow computation[J].Computational Fluid Dynamic Review, 1998,(1):93~113 被引量:1
  • 4[5]Berger M J, leVeque R J.An adaptive cartesian mesh algorithm for the Euler equations in arbitrary geometries[R].AIAA Paper, 89-1930,1989 被引量:1
  • 5[6]Epstein B, Luntz A L, Nachshon A.Multigrid Euler solver about arbitrary aircraft configurations with cartesian grids and local refinement[R].AIAA Paper, 89-1960,1989 被引量:1
  • 6[7]Lin W L, Carlsonk, Chen C J.Diagonal cartesian method for numerical simulation of incompressible flows over complex boundaries[J].Numerical Heat Transfer, Part B, 1998, 33:181~213 被引量:1
  • 7[8]Yang G, Causon D M, Ingram D M, et al .A cartesian cut cell method for compressible flows part A:static body problems [J].The Aeronautical Journal, 1997, 101(1002):47~56 被引量:1
  • 8[9]Yang G, Causon D M, Ingram D M.Calculation of compressible flows about complex moving geometries using a three-dimensional cartesian cut cell method[J].International Journal for Numerical Methods in Fluids, 2000, 33(8):1121~1151 被引量:1
  • 9[10]Ye T, Mittal R, Udaykumar H S, et al .A Cartesian grid method for viscous incompressible flows with complex immersed boundaries[R].AIAA Paper, 99-3312, 1999 被引量:1
  • 10[11]Tucker P G,Pan Z.A cartesian cut cell method for incompressible viscous flow[J].Applied Mathematical Modelling, 2000, 24:591~606 被引量:1

同被引文献12

引证文献2

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部