期刊文献+

有向基因组移位排序问题的O(n^2)快速算法 被引量:2

An O(n_2) Algorithm for Sorting Oriented Genomes by Translocations
下载PDF
导出
摘要 有向基因组移位排序问题在计算生物学研究中占有重要位置 .以前最好的算法时间复杂度为O (n2logn) .该文给出一个有向基因组移位排序的新多项式算法 ,将移位排序的时间复杂度改进为O(n2 ) .算法改进的关键在于找到一种寻找有效合理移位的新方法 ,通过在最小子排列中删除无关顶点确定一个合理移位是否有效 ,从而将寻找一个有效移位的时间复杂度改进为O(n) ,总时间复杂度由此降为O(n2 ) . Sorting genomes by translocations plays an important role in computational biology. Translocation sorting problem for oriented genomes asks the minimum number of translocations to transform one oriented genome into the other. The previous best algorithm uses O(n 2logn) time to compute the optimal translocation sequence transforming one oriented genome into the other. This paper presents a new polynomial time algorithm to implement the same computation by O(n 2) time. The key part for the improvement of the new algorithm is the invention of a new method to compute one validate proper translocation. We find that the valid translocation in a minimum sub permutation is not related with all the vertices of the minimum sub permutation and we can determine a set of vertices unrelated. A proper translocation is determined to be valid by deleting the unrelated vertices in a minimum sub permutation recurrently, thus the valid translocation can be fixed in O(n) time by the new method. There are at most O(n) translocations to transform a genome of n genes into other. Thus the time complexity of finding the translocation sequence is improved to O(n 2).
出处 《计算机学报》 EI CSCD 北大核心 2004年第10期1354-1360,共7页 Chinese Journal of Computers
基金 国家自然科学基金 (60 0 73 0 42 60 2 73 0 3 2 ) 山东省中青年科学家奖励基金资助
关键词 基因组 移位 排序问题 算法 计算生物学 时间复杂度 genomes translocation computational biology algorithm time complexity
  • 相关文献

参考文献14

  • 1Kececioglu J. , Sankoff D.. Exact and approximation algorithms for the inversion distance between two permutations.In: Proceedings of CPM' 93, Lecture Notes in Computer Science-684, Berlin: Springer-Verlag, 1993, 87~105 被引量:1
  • 2Kececioglu J. , Sankoff D.. Efficient bounds for oriented chromosome inversion distance. In: Proceedings of CPM' 94, Lecture Notes in Computer Science-807, Berlin: Springer-Verlag,1994, 307~325 被引量:1
  • 3Bafna V. , Pevzner P.. Genome rearrangements and sorting by reversals. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993, 148~ 157 被引量:1
  • 4Bafna V. , Pevzner P.. Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Molecular Biology and Evolution, 1995, 12:239~246 被引量:1
  • 5Hannenhalli S. , Pevzner P.. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Vegas, Nevada,1995, 178~189 被引量:1
  • 6Kaplan H. , Shamir R. , Tarjan R. E.. Faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal of Computing, 2000, 29(3) :880~892 被引量:1
  • 7Kececioglu J. , Ravi R.. Physical mapping of chromosomes using unique probes. In: Proceedings of the 6th annual ACM-SIAM Symposium on Discrete Algorithms , 1995, 604~613 被引量:1
  • 8Hannenhalli S.. Polynomial-time algorithm for computing translocation distance between genomes. In: Proceedings of CPM '95, 1995, 162~176 被引量:1
  • 9Bafna V. , Pevzner P.. Sorting by transpositions. SIAM Journal on Discrete Mathematics, 1998, 11(2):224~240 被引量:1
  • 10Christie D. A.. Genome Rearrangement Problems[Ph. D. dissertation]. University of Glasgow, 1999 被引量:1

二级参考文献12

  • 1[1]Sankoff D, Cedergren R, Abel Y. Genomic divergence through generearrangement, Molecular Evolution: Computer Analysis of Protein and Nucleic AcidSequences. New York: Academic Press, 1990 被引量:1
  • 2[2]Sankoff D, Leduc G, Antoine N et al. Gene order comparisons for phylogeneticinference: Evolution of the mitochondria genome. In: Proc National Acadamy Science,USA 89, 1992. 6575-6579 被引量:1
  • 3[3]Kececioglu J, Sankoff D. Exact and approximation algorithms for the inversiondistance between two permutations. Algorithmica, 1995, 13:180-210 被引量:1
  • 4[4]Bafna V, Pevzner P. Genome rearrangements and sorting by reversals. In: Procthe 34th IEEE Symposium on Foundations of Computer Science, 1993. 148-157 被引量:1
  • 5[5]Bafna V, Pevzner V. Sorting by reversals: Genome rearrangements in plantorganelles and evolutionary history of X chromosome, Mol. Biol.,1995,12:239-246 被引量:1
  • 6[6]Bafna V, Pevzner P. Sorting by transpositions. In: Proc 6th ACM-SIAMSymposium on Discrete Algorithms,1995. 614-623 被引量:1
  • 7[7]Hannenhalli S, Pevzner P. Transforming cabbige into tunip-polynomialalgorithm for sorting signed permutations by reversals. In: Proc the 27th ACMSymposium on the Theory of Computing, 1995. 178-189 被引量:1
  • 8[8]Hannenhalli S, Pevzner P. Transforming men into mice-polynomial algorithm forgenomic distance problem. In: Proc the 36th IEEE Symposium on Foundations ofComputer Science, 1995. 581-592 被引量:1
  • 9[9]Kececioglu J, Ravi R. Of mice and men: Evolutionary distances between genomesunder translocation. In: Proc the 6th ACM-SIAM Symposium on Discrete Algorithms,1995. 604-613 被引量:1
  • 10[10]Hannenhalli S. Polynomial-time algorithm for computing translocation distancebetween genomes. Discrete Applied Mathematics, 1996, 71:137-151 被引量:1

共引文献6

同被引文献23

  • 1Hannenhalli S,Pevzner P A.Transforming cabbage into turnip:Polynomial algorithm for sorting signed permutations by reversals.Journal of the ACM,1999,46(1):1-27. 被引量:1
  • 2Hannenhalli S.Polynomial-time algorithm for computing translocation distance between genomes.Discrete Applied Mathematics,1996,71(1-3):137-151. 被引量:1
  • 3Kaplan H,Shamir R,Tarjan R E.Faster and simpler algorithm for sorting signed permutations by reversals//Proceed-ings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans,Louisiana,United States,1997:344-351. 被引量:1
  • 4Tannier E,Bergeron A,Sagot M.Advances on sorting by reversals.Discrete Applied Mathematics,2007,155(6-7):881-888. 被引量:1
  • 5Bafna V,Pevzner P A.Sorting by transpositions.SIAM Journal on Discrete Mathematics,1998,11(2),224-240. 被引量:1
  • 6Hartman T,Shamir R.A simpler and faster 1.5-approxima-tion algorithm for sorting by transpositions.Information and Computation,2006,204(2):275-290. 被引量:1
  • 7Elias I,Hartman T A.1.375-approximation algorithm for sorting by transpositions.IEEE/ACM Transactions on Computational Biology and Bioinformatics,2006,3(4):369-379. 被引量:1
  • 8Ozery-Flato M,Shamir R.An O(n^3/2 √logn)) algorithm for sorting by reciprocal translocations //Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching.Barcelona,Spain,2006:258-269. 被引量:1
  • 9Hannenhalli S,Pevzner P A.Transforming men into mice:Polynomial algorithm for genomic distance problem//Pro-ceedings of the 36th Annual Symposium on Foundations of Computer Science.Milwaukee,Wisconsin,1995:581-592. 被引量:1
  • 10Tesler G.Efficient algorithms for multi-chromosomal genome rearrangements.Journal of Computer and System Sciences,2002,65(3):587-609. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部