期刊文献+

一类非光滑广义凸极大极小值问题的最优性条件

Optimality Conditions for a Class of Nonsmooth Generalized Convex Min-max Problems
下载PDF
导出
摘要 在非光滑条件下,利用局部渐近锥和K-方向导致,定义了一类非光滑广义凸函数,并在一定的条件下,得到了涉及这类非光滑广义凸函数极大极小值问题的最优性条件. The optimality conditions for class nonsmooth generalized convex Min-max Problems were presented by means of the concepts of K-directional derivatives and uniform F_K-convex function.
作者 王丽
出处 《延安大学学报(自然科学版)》 2004年第3期9-12,共4页 Journal of Yan'an University:Natural Science Edition
关键词 K-方向导致 一致Fk-凸函数 极大极小值问题 最优性条件 K-directional derivative uniform F_K-convex min-max problem optimality condition
  • 相关文献

参考文献10

  • 1[1]Schmitendorf W E. Necessary Conditions and Sufficient Conditions for Static Minmax Problems[J].J Math Anal Appl,1977,57:683-693. 被引量:1
  • 2[2]Tanimoto S.Duality for a class of Nondifferentiable Mathematical Programming Problems[J].J Math Anal Appl,1981,79:286-294. 被引量:1
  • 3[3]Bector C R and Bhatia B L.Sufficient Optimality Conditions and Duality for a Min-max Problems[J].Utilitas Math,1985,27:229-294. 被引量:1
  • 4[4]Weir T.Pseudoconvex Minmax Programming[J].Utilitas Math,1992,42:234-240. 被引量:1
  • 5[5]Castellani M.Nonsmooth Invex Functions and Sufficient Optimality Conditions[J].J Math Anal Appl,2001,255(2):319-332. 被引量:1
  • 6[6]Elster K H and Thierfelder J. On Cone Approximations and Generalized Directional Derivatives,in "Nonsmooth Optimization and Related Topics"(F.H.Clarke,V.F.Demyanov,and F.Giannessi,Eds)[M].1989,133-159. 被引量:1
  • 7[7]Clarke F H.Optimization and Nonsmooth Analysis[M].Wiley-Interscience,New York,1983. 被引量:1
  • 8[8]Gehner K R.Necessary and Sufficient Conditions for the Fritz John Problem with Linear Equality Constraints[J].SIAM J Control,1974,12:140-149. 被引量:1
  • 9[9]Lai H C,Liu J C.Necessary and Sufficient Conditions for Minimax Fractional Programming[J].J Math Anal Appl,1999,230:311-328. 被引量:1
  • 10[10]Rockafellar R T.Convex Analysis[M].Princeton University Press Princeton,New York,1970. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部