期刊文献+

类比合成方法在干旱区内陆河径流量预报中的应用 被引量:3

Application of the Analog Complexing Algorithm in the Prediction of Runoff Volume in Arid Areas
下载PDF
导出
摘要 类比合成算法是一种多维模式搜索法 ,它具有适用范围广、对资料要求低等优点 ,可用于单变量及多变量时间序列的延拓预测。通过介绍类比合成算法 ,并把它应用于塔里木河源流叶尔羌河、和田河年、月径流量预报 ,其中重点分析了模式长度和合成预报的模式个数等因素对预报结果的影响。通过实测径流资料对预报结果的检验和分析表明 ,类比合成算法可以较好地挖掘径流序列中隐藏的信息 ,在中长期水文预报中是一种行之有效的计算方法。 Hydrological prediction is an important part in hydrology, and is useful in water resources regulation, flood control, drought-relief activities and many other fields. Analog complexing algorithm (ACA) is a multidimensional pattern search method that can be used to predict the development of one-dimensional or multidimensional temporal series. ACA can be used to automatically select several similar patterns (analog patterns) related to a given pattern (reference pattern) for a given pattern similarity measurement, and a prediction pattern for the reference pattern can be developed by using their known continuations. It can be applied in various fields by using the limited observation data. An algorithm is briefly introduced, and it is applied in predicting the annual and monthly runoff volumes of the Yarkant River and Hotan River, two of the sources streams of the Tarim River in Xinjiang. The influences of the pattern length, number of analog patterns and pattern similarity measurements on the predicted results are analyzed. The results show that the pattern length affects significantly the predicted results, especially for the annual runoff volumes. The predicted results of the monthly runoff volumes in dry season is more ideal than that in flood season. The comparison and analysis of the predicted and measured results of runoff volumes reveal that the analog complexing algorithm is feasible and effective in predicting runoff volumes.
出处 《干旱区地理》 CSCD 北大核心 2004年第3期287-292,共6页 Arid Land Geography
基金 国家重点基础研究发展规划 ( 973 )项目 (G19990 43 5 0 6)
关键词 水文系统 径流 内陆河 时间序列 模式识别 arid area prediction of runoff volume temporal series pattern recognition analog compexing algorithm
  • 相关文献

参考文献5

二级参考文献25

  • 1陈仁升,康尔泗,张济世.基于小波变换和GRNN神经网络的黑河出山径流模型[J].中国沙漠,2001,21(z1):12-16. 被引量:19
  • 2胡铁松,丁晶.多层前馈网络的联合梯度学习算法及其在水文预报中的应用[J].水电站设计,1995,11(1):1-6. 被引量:5
  • 3[1]Balzer, K.: Method and results of interpretation of geopotential forecast. In "WMO-Symposium on the interpretation of broad scale NWP product for local forecasting pur- pose." Warsaw 12-16 Oct. 1976. 被引量:1
  • 4[2]Balzer, K.: Müber die automatische Interpretation von Vorhersagekarten am NMC PotsdamEin Erfahrungsbericht Teil I. Z.Meteor. vol. 34 (1984) no.1, pp. 3-13. 被引量:1
  • 5[3]Berndt, D.J., J. Clifford: Finding Patterns in Time Series: A Dynamic Programming Approach.In "Fayyad, U.M. et al: Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press. Menlo Park, California 1996", pp. 229-248. 被引量:1
  • 6[4]Elder IV, J.F., D. Pregibon: A Statistical Perspective on Knowledge Discovery in Databases.In "Fayyad, U.M. et al: Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press. Menlo Park, California 1996", pp. 83-116 被引量:1
  • 7[5]Ivakhnenko, A.G.: An inductive sorting method for the forecasting of multidimensioanl random processes and events, with the help of analogue forecast complexing. Pattern recognition and Image Analysis vol.1 (1991) no.1, pp. 99-107 . 被引量:1
  • 8[6]Lemke, F., Müller, J.-A.: Self-Organizing Data Mining for a Portfolio Trading System. Journal of Computational Intelligence in Finance vol.5 (1997) no.3, pp.12-26. 被引量:1
  • 9[7]Lorence,E.N.: Athmospheric predictability is revealed by naturaly occuring analogues. J. Atmos. Sci. 1969, no. 4, pp. 636-646 被引量:1
  • 10[8]Motnikar, B.S.u.a.: Time-series forecasting by pattern imitation. OR Spektrum,vol. 18 (1996)no.1, pp. 43-49 被引量:1

共引文献54

同被引文献38

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部