期刊文献+

基于细胞自动机的青霉素菌体生长可视化模型

<title>nicillin Biomass Growth Visual Model Based on Cellular Automata
下载PDF
导出
摘要 为了更好地反映出青霉素发酵过程中菌体生长的复杂系统特征,在对青霉素生长分批发酵过程菌体生长机理研究基础上,建立了基于细胞自动机的青霉素分批发酵过程中菌体生长的可视化模型.模型采用二维彩色图案描述了青霉素菌体的生长演化过程;模型演化规则建立在青霉素生产分批发酵过程菌体生长机理及其动力学微分方程模型基础上,更加符合青霉素分批发酵过程菌体生长演化行为的多样性,随机性和不确定性的特点.仿真结果表明,该模型较好地描述了青霉素分批发酵过程中菌体生长的演化行为. <abstract> order to reflect the complex system characterization of biomass growth in penicillin fermentation process, this paper established a biomass growth visual model of penicillin batch fermentation process based on cellular automata by studying the mechanism of penicillin batch fermentation process biomass growth. The model uses color parrern to describe the growth evolution process of penicillin biomass, and its evolution rules are designed based on penicillin batch fermentation process biomass growth mechanism and dynamics differential equations. The model conforms with special characteristics of diversity, random and uncertainty in penicillin batch fermentation process well. Simulation results show that the visual model described the evolution behavior of penicillin fermentation process biomass growth well.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2004年第3期290-294,385,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项且(60274060 60375017)教育部科学技术研究重点资助项目(203002).
关键词 青霉素分批发酵过程 菌体生长 可视化模型 细胞自动机 <keyword>nicillin batch fermentation process biomass growth visual model cellular automata
  • 相关文献

参考文献11

  • 1[1]BAJPAI R K, REU B M. Evaluation of feeding strategies in carbon-regulated secondary metabolite production through mathematical modeling[J]. Biotechnology and Bioengineering, 1981, 23(2): 717-738. 被引量:1
  • 2[2]MENEZES J. Mathematical modeling of penicillin-G fed-batch fermentation[J]. Journal of Chemical Technology and Biotechnology, 1994, 61: 123-138. 被引量:1
  • 3[3]ALBERT S, MARTIN E, MONTAGUE G, et al. Multivariate statistical process control in batch process monitoring[Z]. 13th IFAC World Conference, San Francisco, 1996. 被引量:1
  • 4[4]SAUCEDO V. On-line optimization of fed-batch fermentations using Markov decision processes[D]: [dissertation].Colorado: Colorado State University, 1995. 被引量:1
  • 5[5]THIBAULT J, BREUSEGEM V V, CHERUY A. On-line prediction of fermentation variables using neural networks[J]. Biotechnology and Bioengineering, 1990, 36: 1041-1048. 被引量:1
  • 6[6]TSAPTSINOS D, LEIGH J R. Modeling of a fermentation process using multi-layer perceptions: Epochs vs pattem learning, sigmoid vs linear transfer function[J]. Journal of Microcomputer Applications, 1993, 16(2): 125-136. 被引量:1
  • 7[7]LANGTON C G. Artificial Life[A]. Artificial Life, Volume VI of SFI Studies in the Sciences of Complexity[M]. Redwood City: Addison-Wesley, 1989. 1-47. 被引量:1
  • 8[8]LANGTON C G. Preface[A]. Artificial Life Ⅱ, Volume X of SFI Studies in the Sciences of Complexity[M].Redwood City: Addison-Wesley, 1992. 13-18. 被引量:1
  • 9[9]RAY T S. An evolutionary approach to synthetic bio1ogy: Zen and the art of creating life[J]. Artificial Life Joumal, 1994, 1 (1/2): 179-209. 被引量:1
  • 10[10]AASSINE Saadia, JAI Marie C El. Vegetation dynamics modeling: A method for coupling local and space dynamics[J]. Ecological Modeling, 2002, 154(3): 237-249. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部