期刊文献+

三维IFS分形插值逆问题的局部迭代算法 被引量:3

Local Iteration Algorithm for IFS-Based 3D Fractal Interpolation
下载PDF
导出
摘要 研究了三维IFS分形插值逆问题及其在三维曲面重建中的应用.采用具几何意义的简洁迭代格式,简化了压缩变换组中使用的分形参数和计算环节;提出了一种局部迭代算法,解决了利用拼帖定理确定分形参数时出现的无法分离求解问题,可以逐步收敛到最优解.针对三维地表重建的实验结果表明,该算法在重建质量和计算时间上有很好的实用性. This paper addressed the inverse problem of IFS-based 3D deterministic fractal interpolation and its application for three-dimensional surface reconstruction. The parameters of contractive transformations are simplified by a concise fractal iteration form with geometric meaning. A local iteration algorithm was proposed, which solves the non-separation problem of applying Collage Theorem for finding the appropriate fractal parameters can gradually converge to final optimization. The experiment on terrain surface reconstruction proves it is effective both in reconstruction quality and time costing.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第9期1519-1523,共5页 Journal of Shanghai Jiaotong University
关键词 分形插值 迭代函数系 三维重建 局部迭代算法 Fractals Image reconstruction Interpolation Iterative methods Three dimensional computer graphics
  • 相关文献

参考文献9

  • 1Barnsley M F. Fractal functions and interpolation[J]. Constructive Approximation, 1986, 2(2): 303-329. 被引量:2
  • 2Xie H P, Sun H Q. The study of bivariate fractal interpolation function and creation of fractal interpolation surface[J]. Fractal, 1997, 5 (4): 625- 634. 被引量:2
  • 3Xie H P, Sun H Q. Study on generation of rock fracture surfaces by using fractal interpolation[J]. International Journal of Solids and Structures, 2001,38(32,33): 5765-5787. 被引量:1
  • 4Zhao N. Construction and application of fractal interpolation surfaces[J]. The Visual Computer, 1996,12 (3) : 132- 146. 被引量:2
  • 5Fisher Y. Fractal image compression: theory and application[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 6齐东旭著..分形及其计算机生成[M],1994:211.
  • 7Price J R, Hayes Ⅲ M H. Resampling and reconstruction with fractal interpolation function [J].IEEE Signal Processing Letters, 1998,5 (9): 286 -290. 被引量:1
  • 8Price J R, Hayes Ⅲ M H. Fractal interpolation of images and volumes[A]. 32th Asilomar Conference of Signal, System& Computers[C]. Pacific Grove:IEEE, 1998. 1698-1701. 被引量:1
  • 9吴思源,周源华.基于三维IFS分形插值的DEM重构算法[J].上海交通大学学报,2004,38(4):537-541. 被引量:7

二级参考文献9

  • 1Barnsley M F. Fractal functions and interpolation[J]. Constructive Approximation, 1986,2 (2): 303 -329. 被引量:1
  • 2Masspust P R. Fractal surfaces [J ]. Journal of Mathematical Analysis and Application, 1990, 151(1):275-290. 被引量:1
  • 3Wittenbrink C M. IFS fractal interpolation for 2D and 3D visualization[A]. Proc of the IEEE Visualization Conference[C]. Atlanta: IEEE, 1995.77 - 84. 被引量:1
  • 4Zhao N. Construction and application of fractal interpolation surfaces [J]. The Visual Computer, 1996,12(3): 132- 146. 被引量:1
  • 5Xie H P, Sun H Q. The study of bivariate fractal interpolation function and creation of fractal interpolation surface[J]. Fractal, 1997,5 (4): 625 - 634. 被引量:1
  • 6Xie H P, Sun H Q. Study on generation of rock fracture surfaces by using fractal interpolation[J]. International Journal of Solids and Structures, 2001,38(32-33):5765-5787. 被引量:1
  • 7Barnsley M F. Fractal image compression [M ].Wellesley Massachusetts:AK Peters Ltd, 1993. 173-218. 被引量:1
  • 8Price J R, Hayes Ⅲ M H. Resampling and reconstruction with fractal interpolation function[J]. IEEE Signal Processing Letters, 1998,5 (9): 286- 290. 被引量:1
  • 9肖高逾,周源华.基于分形插值的地貌生成技术[J].上海交通大学学报,2000,34(5):705-707. 被引量:21

共引文献6

同被引文献28

  • 1王梦,金文标.基于函数迭代系统的3-D分形插值算法[J].计算机应用,2006,26(11):2701-2703. 被引量:11
  • 2张韧,洪梅,孙照渤,牛生杰,朱伟军,闵锦忠,万齐林,林建忠(推荐).经验正交函数与遗传算法结合的副热带高压位势场非线性模型反演[J].应用数学和力学,2006,27(12):1439-1446. 被引量:8
  • 3Barnsley M F.Fractal functions and interpolation[J].Constructive Approximation, 1986,2(2) : 303-329. 被引量:1
  • 4Pricf J R,Hayes III M H.Resampling and reconstruction with fractal interpolation functions[J].IEEE Signal Processing Letters,1998,5 (9) : 228-230. 被引量:1
  • 5Wen J,Zhu X.An improved direct inverse problem solver for fractal interpolation functions with applications to signal compression[C]// Proceedings of Signals, Systems, and Electronics ' 95,1995 : 187-190. 被引量:1
  • 6Massopust P R.Fractal surface[J].Journal of Mathematical Analysis and Application, 1990,151 ( 1 ) : 275-290. 被引量:1
  • 7Huang Y M,Chen Ching-ju.3D fractal reconstruction of terrain profile data based on digital elevation model[J].Chaos,Solitons & Fractals, 2007,28 : 1-9. 被引量:1
  • 8Chen J C,Lee T Y.Fractal reality of random data compression for equal-interval sefies[J].Fractals,2000,8(2):205-214. 被引量:1
  • 9Barnsley M,Demko S.Iterated function systems and the global construction of fractals[J].Proceedings of the Royal Society of London Ser A, 1985,399:243-275. 被引量:1
  • 10Lee T Y,Chen C J,Tseng C L.Application of automated linear simplification method for fractal reality of geomorphic data[J].J Survey Eng, 2006,48 (1/2) : 41-62. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部