摘要
研究了三维IFS分形插值逆问题及其在三维曲面重建中的应用.采用具几何意义的简洁迭代格式,简化了压缩变换组中使用的分形参数和计算环节;提出了一种局部迭代算法,解决了利用拼帖定理确定分形参数时出现的无法分离求解问题,可以逐步收敛到最优解.针对三维地表重建的实验结果表明,该算法在重建质量和计算时间上有很好的实用性.
This paper addressed the inverse problem of IFS-based 3D deterministic fractal interpolation and its application for three-dimensional surface reconstruction. The parameters of contractive transformations are simplified by a concise fractal iteration form with geometric meaning. A local iteration algorithm was proposed, which solves the non-separation problem of applying Collage Theorem for finding the appropriate fractal parameters can gradually converge to final optimization. The experiment on terrain surface reconstruction proves it is effective both in reconstruction quality and time costing.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2004年第9期1519-1523,共5页
Journal of Shanghai Jiaotong University
关键词
分形插值
迭代函数系
三维重建
局部迭代算法
Fractals
Image reconstruction
Interpolation
Iterative methods
Three dimensional computer graphics