期刊文献+

蚁群算法及其实现方法研究 被引量:21

Research on the Ant Colony Optimization and Its Implementation Strategy
下载PDF
导出
摘要 蚁群算法是一种相对较新的启发式方法,通过模拟蚂蚁的觅食行为解决问题,是目前昆虫算法中较成功的例子。蚁群算法的本质是一种并行的、自组织的算法,它可应用于更好地组织大数目实体的相互作用过程,如货郎担问题、车辆绕径问题、排程问题等。该文简述了蚁群算法的起源和发展,总结了蚁群算法的特点和不足及针对这些不足提出的各种改进方法,并介绍了和蚁群算法相关的几种具体应用。最后,文章探讨了蚁群算法研究中仍存在的问题和以后的发展方向。 The Ant Colony Optimization(ACO) is a relatively new meta-heuristic algorithm and a successful paradigm of all the algorithms which take advantage of the insects' behavior. The ACO solves problems through mimicking ants' foraging behavior. Essentially, the ACO is a parallel and self-organizing algorithm, which can be applied to improve the management and control of large numbers of interacting entities such as TSP(Travelling Salesman Problem), Vehicle Routing Problem and Scheduling Problems. This article presents the origin and enrichment of the ACO, summarizes this algorithm's advantages,disadvantages,methods to overcome these disadvantages, and introduces some applications of the ACO. After discussing several problems existing in the research,this article puts forward the research foreground of ACO.
出处 《计算机仿真》 CSCD 2004年第7期110-114,共5页 Computer Simulation
基金 中国科学院知识创新工程方向性研究课题资助项目(KGCX2-JG-09)
关键词 蚁群算法 行为启发 AS算法 ACO算法 信息素 局部搜索 Ant system Heuristic Local search
  • 相关文献

参考文献32

  • 1D R Hofstadter. G?del, Escher, Bach: an Eternal Golden Braid[M]. Basic Books, New York, 1979. 被引量:1
  • 2S.Goss, S.Aron, J.L.Deneubourg, and J.M.Pasteels. Self-Organized shortcuts in the Argentine ant[J].Naturwissenschaften,1989,76:579-581. 被引量:1
  • 3V A Cicirello and S F Smith. Insect Societies and Manufacturing[R]. In IJCAI-01 Workshop on Artificial Intelligence and Manufacturing: New AI Paradigms for Manufacturing,August 2001. 被引量:1
  • 4B H?lldobler and E O Wilson. The Ants[R]. The Belknap Press of Harvard University Press,1990. 被引量:1
  • 5A Colorni, M Dorigo, and V Maniezzo. Distributed optimization by ant colonies[C]. In Proceedings of the First European Conference on Artificial Life, pages 134-142. Elsevier Publishing, Paris, France 1992. 被引量:1
  • 6A Colorni, M Dorigo, and V Maniezzo. An investigation of some properties of an "ant algorithm"[C]. In Proceedings of the Parallel Problem Solving from Nature Conference, pages 509-520. Elsevier Publishing, Brussels, Belgium 1992. 被引量:1
  • 7M Dorigo, V Maniezzo, and A Colorni. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 26(1):29-41, February 1996. From Animals to Animats: Proceedings of the First International. 被引量:1
  • 8M Dorigo, G Di Cargo and L M Gambardella. Ant algorithms for distributed discrete optimization[R]. Technical Report 98-10 IRIDIA, Université Libre de Brexelles,1998. 被引量:1
  • 9M Dorigo and G Di Caro. The ant colony optimization meta-heuristic. In D.Corne, M.Dorigo,and F.Glover,editors,New Ideas in Optimization. McGraw-Hill,1999. 被引量:1
  • 10B Bullnheimer,R F Hartl,and C Strauss. An improved ant system algorithm for the vehicle routing problem[J]. Annals of Operations Research, 89:319-328, 1999. 被引量:1

同被引文献118

引证文献21

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部